标签:矩阵
题目大意:顺次给出m个置换,反复使用这m个置换对初始序列进行操作,问k次置换后的序列。m<=10, k<2^31。
首先将这m个置换“合并”起来(算出这m个置换的乘积),然后接下来我们需要执行这个置换k/m次(取整,若有余数则剩下几步模拟即可)。注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:

置换k/m次就相当于在前面乘以k/m个这样的矩阵。我们可以二分计算出该矩阵的k/m次方,再乘以初始序列即可。做出来了别忙着高兴,得意之时就是你灭亡之日,别忘了最后可能还有几个置换需要模拟。
注意:这m个置换对应的矩阵相乘的时候必须左乘
代码如下:
///https://vijos.org/p/1049
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
const int MAX = 105;
struct Matrix
{
int v[MAX][MAX];
};
int n,m,k; //分别代表的是每个置换的长度
//置换的一组的个数
//以及一共置换的操作
Matrix mtAdd(Matrix A, Matrix B) // 求矩阵 A + B
{
int i, j;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
C.v[i][j]=(A.v[i][j]+B.v[i][j]);
return C;
}
Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B
{
int i, j, k;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
{
C.v[i][j] = 0;
for(k = 0; k < n; k ++)
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]);
}
return C;
}
Matrix mtPow(Matrix A, int k) // 求矩阵 A ^ k
{
if(k == 0)
{
memset(A.v, 0, sizeof(A.v));
for(int i = 0; i < n; i ++)
A.v[i][i] = 1;
return A;
}
if(k == 1) return A;
Matrix C = mtPow(A, k / 2);
if(k % 2 == 0)
return mtMul(C, C);
else
return mtMul(mtMul(C, C), A);
}
void out(Matrix A)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
cout<<A.v[i][j]<<" ";
cout<<endl;
}
cout<<endl;
}
int main ()
{
int mp[15][105];
scanf("%d%d%d",&n,&m,&k);
int shang=k/m;
int yushu=k%m;
Matrix ans;
Matrix rig;
Matrix B;
Matrix tem;
for(int i=0;i<n;i++) rig.v[0][i]=i+1; //out(rig);
memset(ans.v,0,sizeof(ans.v));
for(int i=0;i<n;i++) ans.v[i][i]=1;
for(int i=0;i<m;i++)
{
memset(B.v,0,sizeof(B.v));
for(int j=0;j<n;j++)
scanf("%d",&mp[i][j]),B.v[mp[i][j]-1][j]=1;
//out(B);
ans=mtMul(ans,B);
if(i==yushu-1) tem=ans;
}
//out(ans);
//out(tem);
ans=mtPow(ans,shang);
ans=mtMul(ans,tem);
//out(ans);
ans=mtMul(rig,ans);
for(int i=0;i<n;i++) cout<<ans.v[0][i]<<" ";
return 0;
}
题目大意:给出n 和m,给出n个数,代表一个置换,接着一个字符串s,s经过m次置换后变成另一个字符串,
现在给出经过m次置换后的字符串,输出原始字符串s
比如:5 3
2 3 1 5 4
hello
需经过3次置换,则"hello" -> "elhol" -> "lhelo" -> "helol"
思路:将置换规则取反(将p[i]位置上的数num[i]变成p[num[i]]上的数,例如,num: 2 3 1 5 4 变成 num: 3 1 2 5 4
p: 1 2 3 4 5 p: 1 2 3 4 5 )
然后将m次置换合并起来,即算出这m个置换的乘积(即origin^m),然后乘以初始序列[1 2 3 4 ....n],然后输出对应位置的字符即可。
注意任意一个置换都可以表示成矩阵的形式。例如,将1 2 3 4置换为3 1 2 4,相当于下面的矩阵乘法:

m次置换就相当于前面乘以m个这样的矩阵,用矩阵快速幂即可。
因为没有看清楚题意,第二组样例一直过不了,好心酸.......
///https://vijos.org/p/1049
#include<iostream>
#include<stdio.h>
#include<cstring>
using namespace std;
const int MAX = 105;
struct Matrix
{
int v[MAX][MAX];
};
int n,p;
Matrix mtAdd(Matrix A, Matrix B) // 求矩阵 A + B
{
int i, j;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
C.v[i][j]=(A.v[i][j]+B.v[i][j]);
return C;
}
Matrix mtMul(Matrix A, Matrix B) // 求矩阵 A * B
{
int i, j, k;
Matrix C;
for(i = 0; i < n; i ++)
for(j = 0; j < n; j ++)
{
C.v[i][j] = 0;
for(k = 0; k < n; k ++)
C.v[i][j] = (A.v[i][k] * B.v[k][j] + C.v[i][j]);
}
return C;
}
Matrix mtPow(Matrix origin,int k) //矩阵快速幂
{
int i;
Matrix res;
memset(res.v,0,sizeof(res.v));
for(i=1;i<=n;i++)
res.v[i][i]=1;
while(k)
{
if(k&1)
res=mtMul(res,origin);
origin=mtMul(origin,origin);
k>>=1;
}
return res;
}
void out(Matrix A)
{
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
cout<<A.v[i][j]<<" ";
cout<<endl;
}
cout<<endl;
}
int main ()
{
while(~scanf("%d%d",&n,&p))
{
if(n==0&&p==0) break;
int num[90];
Matrix A;
Matrix B;
memset(B.v,0,sizeof(B.v));
for(int i=0;i<n;i++) B.v[0][i]=i;
memset(A.v,0,sizeof(A.v));
for(int i=0;i<n;i++) scanf("%d",&num[i]),A.v[i][num[i]-1]=1;
//out(A);
getchar();
char c[90];
for(int i=0;i<n;i++) scanf("%c",&c[i]);
Matrix ans;
ans=mtPow(A,p);
//out(ans);
ans=mtMul(B,ans);
for(int i=0;i<n;i++) cout<<c[ans.v[0][i]];
cout<<endl;
}
}
矩阵十题【五】 VOJ1049 HDU 2371 Decode the Strings,布布扣,bubuko.com
矩阵十题【五】 VOJ1049 HDU 2371 Decode the Strings
标签:矩阵
原文地址:http://blog.csdn.net/u010468553/article/details/38457945