标签:
题目链接:
Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, column and both main diagonals are odd.
The only line contains odd integer n (1 ≤ n ≤ 49).
Print n lines with n integers. All the integers should be different and from 1 to n2. The sum in each row, column and both main diagonals should be odd.
1
1
3
2 1 4
3 5 7
6 9 8
题意:
找出一个n*n的矩阵,这里面的数是一个[1,n*n]的全排列,要求所有行所有列的和为奇数;n为奇数;
思路:
可以发现n为奇数的时候就是每行每列的个数都是奇数,所有每行每列里面的奇数的个数都是奇数,所有就可以想到中间是一个奇数组成的45度的正方形,其他是偶数;正好用完了所有的偶数和奇数;
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
#include <map>
using namespace std;
#define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<‘0‘||CH>‘9‘;F= CH==‘-‘,CH=getchar());
for(num=0;CH>=‘0‘&&CH<=‘9‘;num=num*10+CH-‘0‘,CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + ‘0‘);
putchar(‘\n‘);
}
const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=3e5+10;
const int maxn=1e3+20;
const double eps=1e-12;
int ans[50][50];
int main()
{
int n;
read(n);
int cnt1=1,cnt2=2,cx=n/2+1,cy=n/2+1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(abs(cx-i)+abs(cy-j)<=n/2)ans[i][j]=cnt1,cnt1+=2;
else ans[i][j]=cnt2,cnt2+=2;
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<n;j++)printf("%d ",ans[i][j]);
printf("%d\n",ans[i][n]);
}
return 0;
}
codeforces 710C C. Magic Odd Square(构造)
标签:
原文地址:http://www.cnblogs.com/zhangchengc919/p/5801141.html