标签:pos turn lin ring math -- get min bit
可以理解为上一道题的扩展板..
然后我们就可以YY出这样一个式子
${\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^cd(ijk)=\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c[gcd(i,j)=gcd(i,k)=gcd(j,k)=1]\lfloor\frac{a}{i}\rfloor\lfloor\frac{b}{j}\rfloor\lfloor\frac{c}{k}\rfloor}$
然后我们枚举第一维,排除掉不和第一维互质的数大力反演就OK啦。
这里介绍另一种很神奇(麻烦)方法,当然这个和反演的关系就没那么大了:
首先设$f(k)=\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}[k=i \times j]$
然后得到$ans=\sum\limits_{i=1}^{a\times b} f(i)\sum\limits_{j=1}{d(i \times j)}$
$ans=\sum\limits_{i=1}^{a\times b} f(i)\sum\limits_{j=1}^{c}{d(i \times j)}$
$ans=\sum\limits_{i=1}^{a\times b} f(i)\sum\limits_{j=1}^{c}\sum\limits_{u=1}^{i}\sum\limits_{v=1}^{j}[gcd(u,v)=1]\lfloor\frac{i}{u}\rfloor\lfloor\frac{j}{v}\rfloor$
$ans=\sum\limits_{i=1}^{a\times b}\sum\limits_{j=1}^{c}[gcd(i,j)=1]\sum\limits_{u=1}^{\frac{a\times b}{i}}f(u\times i)\lfloor \frac{c}{j}\rfloor$
不妨设$S(i)=\sum\limits_{u=1}^{\frac{a\times b}{i}}f(u\times i)$
得到:
$ans=\sum\limits_{i=1}^{a\times b}\sum\limits_{j=1}^{c}[gcd(i,j)=1]S(i)\lfloor \frac{c}{j}\rfloor$
$ans=\sum\limits_{i=1}^{a\times b}\sum\limits_{j=1}^{c}\sum\limits_{d|gcd(i,j)}\mu(d)S(i)\lfloor \frac{c}{j}\rfloor$
不妨设$Q(k)=\sum\limits_{i=1}^{k}\lfloor \frac{k}{i} \rfloor$
得到:
$ans=\sum\limits_{i=1}^{c}\mu(i)\sum\limits_{j=1}^{\frac{a\times b}{i}}S(i\times j)\sum\limits_{k=1}^{\frac{c}{i}}Q(k)$
不妨设$P(k)=\sum\limits_{i=1}^{\frac{a\times b}{k}}S(i\times k)$
最后得到$ans=\sum\limits_{i=1}^{c}\mu(i)P(i)Q(i)$
大力预处理即可。
//CF235E
//by Cydiater
//2017.2.22
#include <iostream>
#include <queue>
#include <map>
#include <cstring>
#include <string>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <iomanip>
#include <algorithm>
#include <bitset>
#include <set>
#include <vector>
#include <complex>
using namespace std;
#define ll int
#define up(i,j,n) for(ll i=j;i<=n;i++)
#define down(i,j,n) for(ll i=j;i>=n;i--)
#define cmax(a,b) a=max(a,b)
#define cmin(a,b) a=min(a,b)
const ll MAXN=4e6+5;
const ll mod=1073741824;
inline ll read(){
char ch=getchar();ll x=0,f=1;
while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)f=-1;ch=getchar();}
while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
return x*f;
}
ll A,B,C,AB,prime[MAXN],P[MAXN],S[MAXN],f[MAXN],Q[MAXN],miu[MAXN],cnt;
bool vis[MAXN];
namespace solution{
void Prepare(){
A=read();B=read();C=read();AB=A*B;
miu[1]=1;
up(i,2,C){
if(!vis[i]){prime[++cnt]=i;miu[i]=-1;}
up(j,1,cnt){
if(i*prime[j]>C)break;
vis[i*prime[j]]=1;
if(i%prime[j])miu[i*prime[j]]=-miu[i];
else break;
}
}
up(i,1,A)up(j,1,B)f[i*j]++;
up(i,1,AB)for(ll j=i;j<=AB;j+=i)
(S[i]+=f[j])%=mod;
up(i,1,AB)for(ll j=i;j<=AB;j+=i)
(P[i]+=S[j])%=mod;
ll pos;
up(i,1,C){
for(ll j=1;j<=i;j=pos+1){
pos=i/(i/j);
Q[i]+=(pos-j+1)*(i/j);
(Q[i]+=mod)%=mod;
}
}
}
void Solve(){
ll ans=0;
up(i,1,C){
(ans+=miu[i]*P[i]*Q[C/i])%=mod;
(ans+=mod)%=mod;
}
cout<<ans<<endl;
}
}
int main(){
//freopen("input.in","r",stdin);
using namespace solution;
Prepare();
Solve();
//cout<<"Time has passed:"<<1.0*clock()/1000<<"s!"<<endl;
return 0;
}
标签:pos turn lin ring math -- get min bit
原文地址:http://www.cnblogs.com/Cydiater/p/6428711.html