标签:ber ons xtend extend beta pos begin free height
Lecture 1-03.01.2017
1.1 Universal algebra
Defination: An algebrical vocabulary $\Omega$ consists of :
Defination: An $\Omega- structure$consists of
Example: A group $G$:
$|F_{0}|=1$: uinte:$e$
$|F_{1}|=1$: $ ()^{-1}:G\rightarrow G $
  $|F_{2}|=1$: $  \times :G\times G \rightarrow G $
$|F_{n}|=0 , n\ge 3$
Defination: A homomorphism $f:\left( A, \left(\omega_{A}\right)_{\omega}\right) \longrightarrow \left( B, \left(\omega_{B}\right)_{\omega}\right) $ is a map
$f:A\longrightarrow B$ such that $\forall \omega $, the below gragh communicate:
  $$\begin{array}[c]{ccc}
  A^{n}&\stackrel{\omega_{A}}{\longrightarrow}&A\\
  \Big\downarrow\scriptstyle{f^{n}}&&\Big\downarrow\scriptstyle{f}\\
  B^{n}&\stackrel{\omega_{B}}{\longrightarrow}&B
  \end{array}$$ 
Example: Free $\Omega-structure$ generated by $V$,denote by $\mathcal{L}(V)$.
elements of $\mathcal{L}(V)$:$terms$.
$$\begin{array}[c]{ccccc}
V &\xrightarrow{i}&\mathcal{L}(V)\\
&\searrow{f}&\Big\downarrow\\
&&(A,(\omega{A})_{\omega})
\end{array}$$
In most time, we take$\left( A, \left(\omega_{A}\right)_{\omega}\right) =\mathbb{2}=\{0,1\}$
1.2 The language of Sentential(Proposition)Logic
| symbols | berbos name | 
| ( | left parenthesis | 
| ) | right parenthesis | 
| $\neg$ | negation symbol | 
| $\vee$ | conjunction symbol | 
| $\wedge$ | disjunction symbol | 
| 
 $\rightarrow$  | 
condition symbol | 
| 
 $\leftrightarrow$  | 
bicondition symbol | 
| 
 $\alpha$  | 
sentence symbol | 
| 
 $\beta$  | 
sentence symbol | 
| 
 $\dots$  | 
$\dots$ | 
Example: $\Omega-structure$ : $A=\{0,1\}$(true:$1$,false:$0$)
$\neg 0=1,\neg 1=0$,
$0\vee 0=0,0\vee 1=1\vee 0=1\vee 1=1$,
$0\wedge 0=1\wedge 0=0\wedge 1=0,1\wedge 1=1$
,$0\rightarrow 0=0\rightarrow 1=1\rightarrow 1=1,1\rightarrow 0=0$.
Let $X$ be the set of some sentence symbol and denote the set of all sentences generated by $X$ and these five function $\neg,\vee,\wedge,\rightarrow,\leftrightarrow$ by $P(X)$.
Defination:(Trueth Assignments) A truth assignment on $P(X)$ is a homomorphism $\bar{v}:\ P(X)\longrightarrow 2$ which is extended by $v:\ X\longrightarrow 2$.
$$\begin{array}[c]{ccccc}
X &\xrightarrow{i}&P(X)\\
&\searrow{v}&\Big\downarrow\\
&&2
\end{array}$$
\end{array}$$
Defination:
Tautology: $\tau$ is said to be a tautology if and only if $\models \tau$.
Hilbert definded these three types tautology which is now said to be axiom:
Let $\Omega\ =\{\perp,\rightarrow\}$ where $\perp$ is consistant and $\rightarrow$ is a binary operation. Then $2=\{0,1\}$ is a $\Omega-structure$.
标签:ber ons xtend extend beta pos begin free height
原文地址:http://www.cnblogs.com/xxldannyboy/p/6649549.html