标签:cal out input sea contains 关系 题意 return with
题意 在坐标系中有n条平行于y轴的线段 当一条线段与还有一条线段之间能够连一条平行与x轴的线不与其他线段相交 就视为它们是可见的 问有多少组三条线段两两相互可见
先把全部线段存下来 并按x坐标排序 线段树记录相应区间从右往左当前可见的线段编号(1...n) 超过一条就为0 然后从左往右对每条线段 先查询左边哪些线段和它是可见的 把可见关系存到数组中 然后把这条线段相应区间的最右端可见编号更新为这条线段的编号 最后暴力统计有多少组即可了
#include <cstdio>
#include <algorithm>
#include <cstring>
#define lc p<<1, s, mid
#define rc p<<1|1, mid+1, e
#define mid ((s+e)>>1)
using namespace std;
const int N = 8005;
int top[N * 8];
bool g[N][N];
struct seg
{
int y1, y2, x;
} line[N];
bool cmp(seg a, seg b)
{
return a.x < b.x;
}
void build()
{
memset(g, 0, sizeof(g));
memset(top, 0, sizeof(top));
}
void pushup(int p)
{
top[p] = (top[p << 1] == top[p << 1 | 1]) ? top[p << 1] : 0;
}
void pushdown(int p)
{
if(top[p])
{
top[p << 1] = top[p << 1 | 1] = top[p];
top[p] = 0;
}
}
void update(int p, int s, int e, int l, int r, int v)
{
if(l <= s && e <= r)
{
top[p] = v;
return;
}
pushdown(p);
if(l <= mid) update(lc, l, r, v);
if(r > mid) update(rc, l, r, v);
pushup(p);
}
void query(int p, int s, int e, int l, int r, int x)
{
if(top[p]) //p相应的区间已经仅仅可见一条线段
{
g[top[p]][x] = 1;
return;
}
if(s == e) return;
if(l <= mid) query(lc, l, r, x);
if(r > mid) query(rc, l, r, x);
}
int main()
{
int T, n, l, r;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d%d%d", &line[i].y1, &line[i].y2, &line[i].x);
sort(line + 1, line + n + 1, cmp);
build();
for(int i = 1; i <= n; ++i)
{
//点化为区间会丢失间隔为1的区间 所以要乘以2
l = (line[i].y1) * 2;
r = (line[i].y2) * 2;
query(1, 0, N * 2, l, r, i);
update(1, 0, N * 2, l, r, i);
}
int ans = 0;
for(int i = 1; i <= n; ++i)
{
for(int j = i + 1; j <= n; ++j)
{
if(g[i][j])
for(int k = j + 1; k <= n; ++k)
if(g[j][k] && g[i][k]) ++ans;
}
}
printf("%d\n", ans);
}
return 0;
}
//Last modified : 2015-07-15 15:33
Description
Input
Output
Sample Input
1 5 0 4 4 0 3 1 3 4 2 0 2 2 0 2 3
Sample Output
1
Source
POJ 1436 Horizontally Visible Segments (线段树·区间染色)
标签:cal out input sea contains 关系 题意 return with
原文地址:http://www.cnblogs.com/yfceshi/p/6746272.html