标签:decode etl ever empty enable 基本 img 解码 .exe
在前面的博客中讨论了Executor, Driver之间如何汇报Executor生成的Shuffle的数据文件,以及Executor获取到Shuffle的数据文件的分布,那么Executor是如何获取到Shuffle的数据文件进行Action的算子的计算呢?
在ResultTask中,Executor通过MapOutPutTracker向Driver获取了ShuffID的Shuffle数据块的结构,整理成以BlockManangerId为Key的结构,这样可以更容易区分究竟是本地的Shuffle还是远端executor的Shuffle
Seq[(BlockManagerId, Seq[(BlockId, Long)])]
class BlockManagerId private (
private var executorId_ : String,
private var host_ : String,
private var port_ : Int,
private var topologyInfo_ : Option[String])
extends Externalizable for ((address, blockInfos) <- blocksByAddress) {
totalBlocks += blockInfos.size
if (address.executorId == blockManager.blockManagerId.executorId) {
// Filter out zero-sized blocks
localBlocks ++= blockInfos.filter(_._2 != 0).map(_._1)
numBlocksToFetch += localBlocks.size
}
}spark.reducer.maxSizeInFlight val targetRequestSize = math.max(maxBytesInFlight / 5, 1L)
val iterator = blockInfos.iterator
var curRequestSize = 0L
var curBlocks = new ArrayBuffer[(BlockId, Long)]
while (iterator.hasNext) {
val (blockId, size) = iterator.next()
// Skip empty blocks
if (size > 0) {
curBlocks += ((blockId, size))
remoteBlocks += blockId
numBlocksToFetch += 1
curRequestSize += size
} else if (size < 0) {
throw new BlockException(blockId, "Negative block size " + size)
}
if (curRequestSize >= targetRequestSize) {
// Add this FetchRequest
remoteRequests += new FetchRequest(address, curBlocks)
curBlocks = new ArrayBuffer[(BlockId, Long)]
logDebug(s"Creating fetch request of $curRequestSize at $address")
curRequestSize = 0
}
}
// Add in the final request
if (curBlocks.nonEmpty) {
remoteRequests += new FetchRequest(address, curBlocks)
}多个FetchRequest会被随机化后放入队列Queue中,每个Executor从Driver端获取的ShuffID对应的BlockManagerID所管理的BlockID的状态是相同的顺序,如果不对FetchRequest进行随机化,那么非常有可能存在多个Executor同时向同一个Executor获取发送FetchRequest的情况,从而导致Executor的负载增高,为了均衡每个Executor的数据获取,随机化FetchRequest是非常有必要的。FetchRequest并不是并行提交的,对同一个Task来说,在Executor的做combine的时候是一个一个的BlockID块合并的,而Task本身就是一个线程运行的,所以不需要设计FetchRequest成并行提交,当一个BlockID完成计算后,才需要判断是否需要进行下一个FetchRequest请求,因为FetchRequest是多个Block提交的,为了控制Executor获取多个BlockID的shuffle数据的带宽,在提交FetchRequest的时候控制了请求的频率
在满足下面以下条件下,才允许提交下个FetchRequest
spark.reducer.maxReqsInFlight
- Executor A 通过ExternalShuffleClient 进行fetchBlocks的操作,如果配置了
io.maxRetries最大重试参数的话,将启动一个能重试RetryingBlockFetcher的获取器- 初始化TransportClient,OneForOneBlockFetcher获取器
- 在OneForOneBlockFetcher里首先向另一个Executor B发送了OpenBlocks的询问请求,里面告知ExecutorID, APPID和BlockID的集合
- Executor B获取到BlockIDs,后通过BlockManager获取相关的BlockID的文件(通过mapid, reduceid获取相关的索引和数据文件),构建FileSegmentManagedBuffer
- 通过StreamManager(OneForOneStreamManager) registerStream 生成streamId,和StreamState(多个ManagedBuffer,AppID)的缓存
返回所生成的StreamId- Executor B 返回给 StreamHandle的消息,里面包含了StreamId和Chunk的数量,这里chunk的数量其实就是Block的数量
- Executor A 获取到 StreamHandle的消息,一个一个的发送ChunkFetchRequest里面包含了StreamId, Chunk index,去真实的获取Executor B的shuffle数据文件
- Executor B 通过传递的ChunkFetchRequest消息获取到StreamId, Chunk index, 通过缓存获取到对应的FileSgementManagedBuffer,返回chunkFetchSuccess消息,里面包含着streamID, 和FileSegmentManagedBuffer
- 在步骤3-6步骤里是堵塞在Task线程里,而步骤7一个一个发送ChunkFetchRequest后,并不堵塞等待返回结果,结果是通过回调函数来实现的,在调用前注册了一个回调函数
client.fetchChunk(streamHandle.streamId, i, chunkCallback); private class ChunkCallback implements ChunkReceivedCallback { @Override public void onSuccess(int chunkIndex, ManagedBuffer buffer) { // On receipt of a chunk, pass it upwards as a block. listener.onBlockFetchSuccess(blockIds[chunkIndex], buffer); } @Override public void onFailure(int chunkIndex, Throwable e) { // On receipt of a failure, fail every block from chunkIndex onwards. String[] remainingBlockIds = Arrays.copyOfRange(blockIds, chunkIndex, blockIds.length); failRemainingBlocks(remainingBlockIds, e); } }- 在这里的listener就是前面fetchBlocks里注入的BlockFetchingListener
new BlockFetchingListener { override def onBlockFetchSuccess(blockId: String, buf: ManagedBuffer): Unit = { // Only add the buffer to results queue if the iterator is not zombie, // i.e. cleanup() has not been called yet. ShuffleBlockFetcherIterator.this.synchronized { if (!isZombie) { // Increment the ref count because we need to pass this to a different thread. // This needs to be released after use. buf.retain() remainingBlocks -= blockId results.put(new SuccessFetchResult(BlockId(blockId), address, sizeMap(blockId), buf, remainingBlocks.isEmpty)) logDebug("remainingBlocks: " + remainingBlocks) } } logTrace("Got remote block " + blockId + " after " + Utils.getUsedTimeMs(startTime)) } override def onBlockFetchFailure(blockId: String, e: Throwable): Unit = { logError(s"Failed to get block(s) from ${req.address.host}:${req.address.port}", e) results.put(new FailureFetchResult(BlockId(blockId), address, e)) } }- 如果获取成功将封装SuccessFetchResult里面保存着blockId,地址,数据大小,以及ManagedBuffer,并保存到results的queue中
override def hasNext: Boolean = numBlocksProcessed < numBlocksToFetch在hasNext里判断当前的是否已经达到需要读取的block数量了,每一次读取下一个block的时候都会在numBlocksProcessed+1,在读取失败的情况下会直接抛出异常。
public interface Message extends Encodable{}public interface Encodable {
/** Number of bytes of the encoded form of this object. */
int encodedLength();
/**
* Serializes this object by writing into the given ByteBuf.
* This method must write exactly encodedLength() bytes.
*/
void encode(ByteBuf buf);
}核心的序列话的encode的入参数是ByteBuf 很符合Netty里的NIO所暴露出的接口,同时也要注意这是Netty的ByteBuf 和Netty是耦合了MessageToMessageEncoder在Spark里自己实现MessageToMessageEncoder的encoder的方法protected abstract void encode(ChannelHandlerContext paramChannelHandlerContext, I paramI, List<Object> paramList) /* */ throws Exception;
public final class MessageEncoder extends MessageToMessageEncoder<Message> {
private static final Logger logger = LoggerFactory.getLogger(MessageEncoder.class);
/***
* Encodes a Message by invoking its encode() method. For non-data messages, we will add one
* ByteBuf to ‘out‘ containing the total frame length, the message type, and the message itself.
* In the case of a ChunkFetchSuccess, we will also add the ManagedBuffer corresponding to the
* data to ‘out‘, in order to enable zero-copy transfer.
*/
@Override
public void encode(ChannelHandlerContext ctx, Message in, List<Object> out) throws Exception {
Object body = null;
long bodyLength = 0;
boolean isBodyInFrame = false;
// If the message has a body, take it out to enable zero-copy transfer for the payload.
if (in.body() != null) {
try {
bodyLength = in.body().size();
body = in.body().convertToNetty();
isBodyInFrame = in.isBodyInFrame();
} catch (Exception e) {
in.body().release();
if (in instanceof AbstractResponseMessage) {
AbstractResponseMessage resp = (AbstractResponseMessage) in;
// Re-encode this message as a failure response.
String error = e.getMessage() != null ? e.getMessage() : "null";
logger.error(String.format("Error processing %s for client %s",
in, ctx.channel().remoteAddress()), e);
encode(ctx, resp.createFailureResponse(error), out);
} else {
throw e;
}
return;
}
}
Message.Type msgType = in.type();
// All messages have the frame length, message type, and message itself. The frame length
// may optionally include the length of the body data, depending on what message is being
// sent.
int headerLength = 8 + msgType.encodedLength() + in.encodedLength();
long frameLength = headerLength + (isBodyInFrame ? bodyLength : 0);
ByteBuf header = ctx.alloc().heapBuffer(headerLength);
header.writeLong(frameLength);
msgType.encode(header);
in.encode(header);
assert header.writableBytes() == 0;
if (body != null) {
// We transfer ownership of the reference on in.body() to MessageWithHeader.
// This reference will be freed when MessageWithHeader.deallocate() is called.
out.add(new MessageWithHeader(in.body(), header, body, bodyLength));
} else {
out.add(header);
}
}
}
public final class MessageDecoder extends MessageToMessageDecoder<ByteBuf>在decode方法里,直接对ByteBuf进行decode会Message
public void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) {
Message.Type msgType = Message.Type.decode(in);
Message decoded = decode(msgType, in);
assert decoded.type() == msgType;
logger.trace("Received message {}: {}", msgType, decoded);
out.add(decoded);
}对每个不同的Message 分别调用了各自的decode的方法。respond(new ChunkFetchSuccess(req.streamChunkId, buf));在buf里的ManagedBuffer是FileSegmentManagedBuffer,而在刚才的encode函数里
body = in.body().convertToNetty();
public Object convertToNetty() throws IOException {
if (conf.lazyFileDescriptor()) {
return new DefaultFileRegion(file, offset, length);
} else {
FileChannel fileChannel = new FileInputStream(file).getChannel();
return new DefaultFileRegion(fileChannel, offset, length);
}
}使用了DefaultFileRegion,这是一个Netty里传递文件使用零拷贝的方式,在FileRegion里是调用TransferTo进行零拷贝复制文件,关于零拷贝在这里不介绍了 public abstract long transferTo(WritableByteChannel paramWritableByteChannel, long paramLong)
throws IOException;但是问题是encode的方法里返回的MessageWithHeader对象,并不是DefaultFileRegionif (body != null) {
// We transfer ownership of the reference on in.body() to MessageWithHeader.
// This reference will be freed when MessageWithHeader.deallocate() is called.
out.add(new MessageWithHeader(in.body(), header, body, bodyLength));
}class MessageWithHeader extends AbstractReferenceCounted implements FileRegion原来是FileRegion,对Netty来说FileRegion最后调用的TransferTo进行传递
public long transferTo(final WritableByteChannel target, final long position) throws IOException {
Preconditions.checkArgument(position == totalBytesTransferred, "Invalid position.");
// Bytes written for header in this call.
long writtenHeader = 0;
if (header.readableBytes() > 0) {
writtenHeader = copyByteBuf(header, target);
totalBytesTransferred += writtenHeader;
if (header.readableBytes() > 0) {
return writtenHeader;
}
}
// Bytes written for body in this call.
long writtenBody = 0;
if (body instanceof FileRegion) {
writtenBody = ((FileRegion) body).transferTo(target, totalBytesTransferred - headerLength);
} else if (body instanceof ByteBuf) {
writtenBody = copyByteBuf((ByteBuf) body, target);
}
totalBytesTransferred += writtenBody;
return writtenHeader + writtenBody;
}writtenBody = ((FileRegion) body).transferTo(target, totalBytesTransferred - headerLength);来传递文件,而其他的ByteBuf 直接写到Write的channel 里。
public static ChunkFetchSuccess decode(ByteBuf buf) {
StreamChunkId streamChunkId = StreamChunkId.decode(buf);
buf.retain();
NettyManagedBuffer managedBuf = new NettyManagedBuffer(buf.duplicate());
return new ChunkFetchSuccess(streamChunkId, managedBuf);
}Spark Shuffle(三)Executor是如何fetch shuffle的数据文件
标签:decode etl ever empty enable 基本 img 解码 .exe
原文地址:http://blog.csdn.net/raintungli/article/details/71411684