标签:style blog http color os io ar for 2014
题意:给定一些已经存在的等价性证明,要求全部等价,需要在多最少几次证明
思路:先求出强连通分量,然后进行缩点,在缩点后的图上统计入度和出度为0结点的最大值,就是需要加的边数,注意如果整个图已经是强连通,就直接是答案
代码:
#include <cstdio>
#include <cstring>
#include <vector>
#include <stack>
#include <algorithm>
using namespace std;
const int N = 20005;
vector<int> g[N], scc[N];
int pre[N], lowlink[N], sccno[N], dfs_clock, scc_cnt;
stack<int> S;
void dfs_scc(int u) {
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
for (int i = 0; i < g[u].size(); i++) {
int v = g[u][i];
if (!pre[v]) {
dfs_scc(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
} else if (!sccno[v])
lowlink[u] = min(lowlink[u], pre[v]);
}
if (lowlink[u] == pre[u]) {
scc_cnt++;
while (1) {
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if (x == u) break;
}
}
}
void find_scc(int n) {
dfs_clock = scc_cnt = 0;
memset(sccno, 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
for (int i = 0; i < n; i++)
if (!pre[i]) dfs_scc(i);
}
int in[N], out[N];
int T, n, m;
int main() {
scanf("%d", &T);
while (T--) {
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++) g[i].clear();
int u, v;
for (int i = 0; i < m; i++) {
scanf("%d%d", &u, &v); u--; v--;
g[u].push_back(v);
}
find_scc(n);
for (int i = 1; i <= scc_cnt; i++) in[i] = out[i] = 1;
for (int u = 0; u < n; u++)
for (int i = 0; i < g[u].size(); i++) {
int v = g[u][i];
if (sccno[u] != sccno[v]) in[sccno[v]] = out[sccno[u]] = 0;
}
int a = 0, b = 0;
for (int i = 1; i <= scc_cnt; i++) {
if (in[i]) a++;
if (out[i]) b++;
}
int ans = max(a, b);
if (scc_cnt == 1) ans = 0;
printf("%d\n", ans);
}
return 0;
}UVA 12167 - Proving Equivalences(强连通分量+缩点)
标签:style blog http color os io ar for 2014
原文地址:http://blog.csdn.net/accelerator_/article/details/38931071