标签:blog http io ar for 2014 html log sp
题意:输入n(n = p*q p,q是质数) 并且x*x=x(mod n) 求x
思路: x*x=x(mod n) -> x*x+k*n=x -> x*(x-1)/n = k 所以 0 和 1 是一组解 因为n = p*q 且x*(x-1)%(p*q)== 0 x < n 因为x*x%n == x 模n之后才是x
1.x有p因子x-1有q因子
x%p == 0且(x-1)%q == 0
a*p == x且b*q == x-1 得到a*p-b*q == 1 gcd(p, q) == 1 用扩展欧几里德解出a, x ==a*p就是答按 在使他大于0
2.x-1有p因子x有q因子 x%p == 0 同上
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
void gcd(int a, int b, int& d, int& x, int& y)
{
if(!b)
{
d = a;
x = 1;
y = 0;
}
else
{
gcd(b, a%b, d, y, x);
y -= x * (a/b);
}
}
bool prime(int x)
{
for(int i = 2; i*i <= x; i++)
{
if(x%i == 0)
return false;
}
return true;
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n;
scanf("%d", &n);
int p, q;
for(int i = 2; i*i <= n; i++)
{
if(n%i == 0 && prime(i) && prime(n/i))
{
p = i;
q = n/i;
break;
}
}
int x, y, d;
gcd(p, q, d, x, y);
int x1 = p*x;
if(x1 < 0)
x1 += n;
gcd(q, p, d, x, y);
int x2 = q*x;
if(x2 < 0)
x2 += n;
if(x1 > x2)
swap(x1, x2);
printf("%d %d %d %d\n", 0, 1, x1, x2);
}
return 0;
}
标签:blog http io ar for 2014 html log sp
原文地址:http://blog.csdn.net/u011686226/article/details/38959865