给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。
题目保证有解。
标签:解决 name 题解 microsoft data amp int return log
题解:又是一种奇奇怪怪的做法~
如果我们给所有白色边增加边权,那么所选的白色边一定越来越少(反之同理)。所以我们二分给白色边增加多少边权,跑kruskal,最后再将增加的边权减去即可。
但是你可能怀疑二分的正确性?即如果给白色边边权加上mid,则所选白色边>need,如果加上mid+1,则所选白色边<need。解决方法是,在排序的时候,我们将白色边放在相同长度的黑色边之前。这样,因为mid+1时白边<mid,所以一定有若干=mid的黑边。在mid时,我们多选的白边就可以被黑边替换掉。所以在最后统计答案的时候,只需要ans-=mid*need即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n,m,nd,ans,sum,cnt,wt;
struct edge
{
int a,b,col,val;
}p[100010];
int f[50010];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<‘0‘||gc>‘9‘) {if(gc==‘-‘)f=-f; gc=getchar();}
while(gc>=‘0‘&&gc<=‘9‘) ret=ret*10+gc-‘0‘,gc=getchar();
return ret*f;
}
bool cmp(edge a,edge b)
{
return (a.val==b.val)?(a.col<b.col):(a.val<b.val);
}
int find(int x)
{
return (f[x]==x)?x:(f[x]=find(f[x]));
}
int solve(int x)
{
int i,ra,rb,ret;
for(i=1;i<=m;i++) if(!p[i].col) p[i].val+=x;
sort(p+1,p+m+1,cmp);
sum=cnt=wt=0;
for(i=1;i<=n;i++) f[i]=i;
for(i=1;i<=m;i++)
{
ra=find(p[i].a),rb=find(p[i].b);
if(ra!=rb)
{
cnt++,wt+=1-p[i].col,f[ra]=rb,sum+=p[i].val;
if(cnt==n-1)
{
if(wt>=nd) ans=sum-x*nd,ret=1;
else ret=0;
}
}
}
for(i=1;i<=m;i++) if(!p[i].col) p[i].val-=x;
return ret;
}
int main()
{
int i,l=0,r=0,mid;
n=rd(),m=rd(),nd=rd();
for(i=1;i<=m;i++) p[i].a=rd()+1,p[i].b=rd()+1,p[i].val=rd(),p[i].col=rd(),r=max(r,p[i].val+1);
l=-r;
while(l<r)
{
mid=l+r>>1;
if(solve(mid)) l=mid+1;
else r=mid;
}
printf("%d",ans);
return 0;
}
标签:解决 name 题解 microsoft data amp int return log
原文地址:http://www.cnblogs.com/CQzhangyu/p/7189787.html