1 //It is made by Awson on 2017.9.20
  2 #include <set>
  3 #include <map>
  4 #include <cmath>
  5 #include <ctime> 
  6 #include <queue>
  7 #include <stack>
  8 #include <string>
  9 #include <cstdio>
 10 #include <vector>
 11 #include <cstdlib>
 12 #include <cstring>
 13 #include <iostream>
 14 #include <algorithm>
 15 #define Min(a, b) ((a) < (b) ? (a) : (b))
 16 #define Max(a, b) ((a) > (b) ? (a) : (b))
 17 #define LL long long
 18 using namespace std;
 19 const int N = 20000;
 20 const int INF = ~0u>>1;
 21 
 22 struct tt {
 23     int to, cost, next;
 24 }edge[N*2+5];
 25 int path[N+5], top;
 26 int n, u, v, c;
 27 int ans;
 28 bool vis[N+5];
 29 int size[N+5], mx[N+5], minsize, root;
 30 int f[N+5][3];
 31 
 32 int gcd(int a, int b) {
 33     return b == 0 ? a : gcd(b, a%b);
 34 }
 35 void add(int u, int v, int c) {
 36     edge[++top].to = v;
 37     edge[top].cost = c;
 38     edge[top].next = path[u];
 39     path[u] = top;
 40 }
 41 void get_size(int u, int fa) {
 42     size[u] = 1; mx[u] = 0;
 43     for (int i = path[u]; i; i = edge[i].next)
 44         if (!vis[edge[i].to] && edge[i].to != fa) {
 45             get_size(edge[i].to, u);
 46             size[u] += size[edge[i].to];
 47             mx[u] = Max(mx[u], size[edge[i].to]);
 48         }
 49 }
 50 void get_root(int r, int u, int fa) {
 51     mx[u] = Max(mx[u], size[r]-size[u]);
 52     if (mx[u] < minsize) minsize = mx[u], root = u;
 53     for (int i = path[u]; i; i = edge[i].next)
 54         if (!vis[edge[i].to] && edge[i].to != fa)
 55             get_root(r, edge[i].to, u);
 56 }
 57 void get_ans(int u, int fa) {
 58     f[u][0] = 1;
 59     f[u][1] = f[u][2] = 0;
 60     for (int i = path[u]; i; i = edge[i].next)
 61         if (!vis[edge[i].to] && edge[i].to != fa) {
 62             get_ans(edge[i].to, u);
 63             f[u][edge[i].cost%3] += f[edge[i].to][0];
 64             f[u][(1+edge[i].cost)%3] += f[edge[i].to][1];
 65             f[u][(2+edge[i].cost)%3] += f[edge[i].to][2];
 66         }
 67 }
 68 void solve(int x) {
 69     minsize = INF;
 70     int flag[3] = {0};
 71     get_size(x, 0);
 72     get_root(x, x, 0);
 73     vis[root] = true;
 74     f[root][0] = 1;
 75     f[root][1] = f[root][2] = 0;
 76     for (int i = path[root]; i; i = edge[i].next)
 77         if (!vis[edge[i].to]) {
 78             get_ans(edge[i].to, 0);
 79             flag[edge[i].cost%3] = f[edge[i].to][0];
 80             flag[(1+edge[i].cost)%3] = f[edge[i].to][1];
 81             flag[(2+edge[i].cost)%3] = f[edge[i].to][2];
 82             ans -= flag[0]*flag[0] + flag[1]*flag[2]*2;
 83             f[root][0] += flag[0];
 84             f[root][1] += flag[1];
 85             f[root][2] += flag[2];
 86         }
 87     ans += f[root][0]*f[root][0] + f[root][1]*f[root][2]*2;
 88     for (int i = path[root]; i; i = edge[i].next)
 89         if (!vis[edge[i].to])
 90             solve(edge[i].to);
 91 }
 92 void work() {
 93     for (int i = 1; i < n; i++) {
 94         scanf("%d%d%d", &u, &v, &c);
 95         c %= 3;
 96         add(u, v, c); add(v, u, c);
 97     }
 98     ans = 0;
 99     solve(1);
100     int tmp = gcd(ans, n*n);
101     printf("%d/%d\n", ans/tmp, n*n/tmp);
102 }
103 int main() {
104     while (~scanf("%d", &n))
105         work();
106     return 0; 
107 }