标签:mem har str strong problem 最小 pac 一个 ios
好神啊。。
需要用非负数个a1,a2,a3...an来凑出B
可以知道,如果一个数x能被凑出来,那么x+a1,x+a2.......x+an也都能被凑出来
那么我们只需要选择a1~an中任意一个的a,可以求出在%a下的每个数最小需要多少才能凑出来
这样我们选择一个最小的a,速度更快,令m=min(a[k]) 1 <= k <= n
然后建模,i向(i+a[j])%m连一条权值为a[j]的边
跑一边最短路就可以了
然后需要求Bmin~Bmax中的解
只需要ans(Bmax)-ans(Bmin)即可
注意a[i]==0的点。。。。
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define N 6000001
#define LL long long
using namespace std;
int n, cnt;
int head[N], to[N], next[N];
LL L, R, ans, dis[N], m = ~(1 << 31), a[21], val[N];
bool vis[N];
queue <int> q;
inline LL read()
{
LL x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == ‘-‘) f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - ‘0‘;
return x * f;
}
inline void add(int x, int y, LL z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
}
inline void spfa()
{
int i, u, v;
for(i = 0; i < m; i++) dis[i] = 1e13;
q.push(0);
dis[0] = 0;
while(!q.empty())
{
u = q.front();
vis[u] = 0;
q.pop();
for(i = head[u]; ~i; i = next[i])
{
v = to[i];
if(dis[v] > dis[u] + val[i])
{
dis[v] = dis[u] + val[i];
if(!vis[v])
{
vis[v] = 1;
q.push(v);
}
}
}
}
}
inline LL query(LL x)
{
int i;
LL ans = 0;
for(i = 0; i < m; i++)
if(dis[i] <= x)
ans += (x - dis[i]) / m + 1;
return ans;
}
int main()
{
LL x, y;
int i, j;
n = read();
L = read();
R = read();
memset(head, -1, sizeof(head));
for(i = 1; i <= n; i++)
{
a[i] = read();
if(!a[i])
{
i--, n--;
continue;
}
m = min(m, a[i]);
}
for(i = 0; i < m; i++)
for(j = 1; j <= n; j++)
add(i, (i + a[j]) % m, a[j]);
spfa();
printf("%lld\n", query(R) - query(L - 1));
return 0;
}
标签:mem har str strong problem 最小 pac 一个 ios
原文地址:http://www.cnblogs.com/zhenghaotian/p/7645412.html