//获得构建的主要方向
double getOrientation(vector<Point> &pts, Mat &img)
{
//构建pca数据。这里做的是将轮廓点的x和y作为两个维压到data_pts中去。
Mat data_pts = Mat(pts.size(), 2, CV_64FC1);//使用mat来保存数据,也是为了后面pca处理需要
for (int i = 0; i < data_pts.rows; ++i)
{
data_pts.at<double>(i, 0) = pts[i].x;
data_pts.at<double>(i, 1) = pts[i].y;
}
//执行PCA分析
PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW);
//获得最主要分量,在本例中,对应的就是轮廓中点,也是图像中点
Point pos = Point(pca_analysis.mean.at<double>(0, 0),pca_analysis.mean.at<double>(0, 1));
//存储特征向量和特征值
vector<Point2d> eigen_vecs(2);
vector<double> eigen_val(2);
for (int i = 0; i < 2; ++i)
{
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),pca_analysis.eigenvectors.at<double>(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at<double>(i,0);//注意,这个地方原代码写错了
}
//在轮廓/图像中点绘制小圆
circle(img, pos, 3, CV_RGB(255, 0, 255), 2);
//计算出直线,在主要方向上绘制直线
line(img, pos, pos + 0.02 * Point(eigen_vecs[0].x * eigen_val[0], eigen_vecs[0].y * eigen_val[0]) , CV_RGB(255, 255, 0));
line(img, pos, pos + 0.02 * Point(eigen_vecs[1].x * eigen_val[1], eigen_vecs[1].y * eigen_val[1]) , CV_RGB(0, 255, 255));
//返回角度结果
return atan2(eigen_vecs[0].y, eigen_vecs[0].x);
}