码迷,mamicode.com
首页 > 其他好文 > 详细

组合数逆元

时间:2017-10-19 12:49:41      阅读:172      评论:0      收藏:0      [点我收藏+]

标签:line   span   pre   sans   style   变形   技术分享   event   代码   

费马小定理:

  在p是素数的情况下 a^pa(modp),对式子变形得:a^(p-1)1(modp),那么a的逆元inv[a] = a^(p-2)。

 

组合数C(m,n) = m! / (n! * (m-n)!),当C(m,n)特别大的时候,需要对p取余,若p是素数,那么可以利用费马小定理快速求逆元。

C(m,n) % p = (m! / (n! * (m-n)!))%p = (m! / (m-n)! * inv[n!])%p

 

m! / (m-n)! * inv[n!]可以O(n)实现,代码如下

技术分享
LL C(LL m,LL n)
{
    LL ans = 1;
    for(LL i=1;i<=n;i++)
    {
        ans = ans*(m-i+1)%mod*inv[i]%mod;
    }
    return ans;
}
View Code

 

组合数逆元

标签:line   span   pre   sans   style   变形   技术分享   event   代码   

原文地址:http://www.cnblogs.com/alan-W/p/7691299.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!