标签:define [1] gcd lcm cpp scanf 正整数 分段 ane
Input输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为两个正整数N,M (0 < N <= 1000,000,000 , 0 < M <= 10),表示X小于等于N,数组a和b中各有M个元素。接下来两行,每行各有M个正整数,分别为a和b中的元素。Output对应每一组输入,在独立一行中输出一个正整数,表示满足条件的X的个数。
Sample Input
3 10 3 1 2 3 0 1 2 100 7 3 4 5 6 7 8 9 1 2 3 4 5 6 7 10000 10 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9
Sample Output
1 0 3
在我看来算是中国剩余定理的一个变形题目,或者说是lcm的一个变形题目。
每个符合答案的数字在0-N之间,并且间距为lcm。设lcm+x为符合所有a[i]的解,则lcm+lcm+x也同样符合条件。
证:
(lcm+x)%a[i]=b[i]
lcm%a[i]=0
(lcm+lcm+x)%a[i]=lcm%a[i]+(lcm+x)%a[i]=b[i]
设t=N%lcm
本题就可以求0-t之间是否有解和 t - lcm+t之间是否有解来解决
#include <iostream>
#include<cstdio>
using namespace std;
#define ll long long
int a[15];
int b[15];
int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
int lcm=1;
cin>>n>>m;
for(int i=0;i<m;i++)
{
cin>>a[i];
lcm=a[i]/gcd(lcm,a[i])*lcm;
}
for(int i=0;i<m;i++)
{
cin>>b[i];
}
int r=n%lcm;
int cnt1=0;
for(int i=1;i<=r&&!cnt1;i++)
{
for(int j=0;j<m;j++)
{
if(i%a[j]!=b[j])
break;
if(j==m-1)
{
cnt1++;
}
}
}
int cnt2=0;
for(int i=r+1;i<=r+lcm&&!cnt2;i++)
{
for(int j=0;j<m;j++)
{
if(i%a[j]!=b[j])
break;
if(j==m-1)
cnt2+=n/lcm;
}
}
cout<<cnt1+cnt2<<endl;
}
}
标签:define [1] gcd lcm cpp scanf 正整数 分段 ane
原文地址:http://www.cnblogs.com/ygtzds/p/7900462.html