【BZOJ4012】开店(主席树)
题面
Description
风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到
人生哲学。最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点钱。这样的
想法当然非常好啦,但是她们也发现她们面临着一个问题,那就是店开在哪里,面
向什么样的人群。很神奇的是,幻想乡的地图是一个树形结构,幻想乡一共有 n
个地方,编号为 1 到 n,被 n-1 条带权的边连接起来。每个地方都住着一个妖怪,
其中第 i 个地方的妖怪年龄是 x_i。妖怪都是些比较喜欢安静的家伙,所以它们并
不希望和很多妖怪相邻。所以这个树所有顶点的度数都小于或等于 3。妖怪和人一
样,兴趣点随着年龄的变化自然就会变化,比如我们的 18 岁少女幽香和八云紫就
比较喜欢可爱的东西。幽香通过研究发现,基本上妖怪的兴趣只跟年龄有关,所以
幽香打算选择一个地方 u(u为编号),然后在 u开一家面向年龄在 L到R 之间(即
年龄大于等于 L、小于等于 R)的妖怪的店。也有可能 u这个地方离这些妖怪比较
远,于是幽香就想要知道所有年龄在 L 到 R 之间的妖怪,到点 u 的距离的和是多
少(妖怪到 u 的距离是该妖怪所在地方到 u 的路径上的边的权之和) ,幽香把这个
称为这个开店方案的方便值。幽香她们还没有决定要把店开在哪里,八云紫倒是准
备了很多方案,于是幽香想要知道,对于每个方案,方便值是多少呢。
Input
第一行三个用空格分开的数 n、Q和A,表示树的大小、开店的方案个数和妖
怪的年龄上限。
第二行n个用空格分开的数 x_1、x_2、…、x_n,x_i 表示第i 个地点妖怪的年
龄,满足0<=x_i<A。(年龄是可以为 0的,例如刚出生的妖怪的年龄为 0。)
接下来 n-1 行,每行三个用空格分开的数 a、b、c,表示树上的顶点 a 和 b 之
间有一条权为c(1 <= c <= 1000)的边,a和b 是顶点编号。
接下来Q行,每行三个用空格分开的数 u、 a、 b。对于这 Q行的每一行,用 a、
b、A计算出 L和R,表示询问“在地方 u开店,面向妖怪的年龄区间为[L,R]的方
案的方便值是多少”。对于其中第 1 行,L 和 R 的计算方法为:L=min(a%A,b%A),
R=max(a%A,b%A)。对于第 2到第 Q行,假设前一行得到的方便值为 ans,那么当
前行的 L 和 R 计算方法为: L=min((a+ans)%A,(b+ans)%A),
R=max((a+ans)%A,(b+ans)%A)。
Output
对于每个方案,输出一行表示方便值。
Sample Input
10 10 10
0 0 7 2 1 4 7 7 7 9
1 2 270
2 3 217
1 4 326
2 5 361
4 6 116
3 7 38
1 8 800
6 9 210
7 10 278
8 9 8
2 8 0
9 3 1
8 0 8
4 2 7
9 7 3
4 7 0
2 2 7
3 2 1
2 3 4
Sample Output
1603
957
7161
9466
3232
5223
1879
1669
1282
0
HINT
满足 n<=150000,Q<=200000。对于所有数据,满足 A<=10^9
题解
这道题目和BZOJ3626 LCA很相似
所以现在就可以考虑像上面那道题目一样的
向链上打标记
但是考虑到有年龄的限制
所以需要用主席树
还有就是空间可能开不下
要标记永久化
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 200000
#define ll long long
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line
{
int v,next,w;
}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
}
int n,Q,A,Age[MAX],S[MAX],tot;
/***********************************************************************/
int dfn[MAX],dis[MAX],top[MAX],size[MAX],hson[MAX],fa[MAX];
int tim,ln[MAX];
void dfs1(int u,int ff)
{
fa[u]=ff;size[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff)continue;
dis[v]=dis[u]+e[i].w;
dfs1(v,u);
size[u]+=size[v];
if(size[v]>size[hson[u]])hson[u]=v;
}
}
void dfs2(int u,int tp)
{
top[u]=tp;dfn[u]=++tim;ln[tim]=u;
if(hson[u])dfs2(hson[u],tp);
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==fa[u]||v==hson[u])continue;
dfs2(v,v);
}
}
/***********************************************************************/
struct Node
{
int ls,rs;
ll sum;
ll lz;
}t[MAX<<6];
int Cnt;
bool cmp(int a,int b){return Age[a]<Age[b];}
void Build(int &now,int l,int r)
{
now=++Cnt;
if(l==r)return;
int mid=(l+r)>>1;
Build(t[now].ls,l,mid);
Build(t[now].rs,mid+1,r);
}
void Modify(int &now,int l,int r,int al,int ar)
{
t[++Cnt]=t[now];now=Cnt;
t[now].sum+=dis[ln[ar]]-dis[fa[ln[al]]];
if(l==al&&r==ar){t[now].lz++;return;}
int mid=(l+r)>>1;
if(ar<=mid)Modify(t[now].ls,l,mid,al,ar);
else if(al>mid)Modify(t[now].rs,mid+1,r,al,ar);
else
{
Modify(t[now].ls,l,mid,al,mid);
Modify(t[now].rs,mid+1,r,mid+1,ar);
}
}
ll Query(int now,int l,int r,ll ly,int al,int ar)
{
if(l==al&&r==ar)return t[now].sum+1ll*ly*(dis[ln[ar]]-dis[fa[ln[al]]]);
int mid=(l+r)>>1;
if(ar<=mid)return Query(t[now].ls,l,mid,ly+t[now].lz,al,ar);
if(al>mid)return Query(t[now].rs,mid+1,r,ly+t[now].lz,al,ar);
return Query(t[now].ls,l,mid,ly+t[now].lz,al,mid)+Query(t[now].rs,mid+1,r,ly+t[now].lz,mid+1,ar);
}
/***********************************************************************/
ll sdis[MAX];
int rt[MAX],id[MAX];
ll Calc(int u,int K)
{
ll ret=0;
while(top[u]!=1)ret+=Query(rt[K],1,n,0,dfn[top[u]],dfn[u]),u=fa[top[u]];
ret+=Query(rt[K],1,n,0,1,dfn[u]);
return ret;
}
int main()
{
n=read();Q=read();A=read();
for(int i=1;i<=n;++i)id[i]=i,Age[i]=read(),S[++tot]=Age[i];
sort(&S[1],&S[n+1]);
sort(&id[1],&id[n+1],cmp);
for(int i=1;i<n;++i)
{
int u=read(),v=read(),C=read();
Add(u,v,C);Add(v,u,C);
}
dfs1(1,0);dfs2(1,1);
Build(rt[0],1,n);
for(int i=1;i<=n;++i)
{
int x=id[i];
sdis[i]=sdis[i-1]+dis[x];
rt[i]=rt[i-1];
while(top[x]!=1)
Modify(rt[i],1,n,dfn[top[x]],dfn[x]),x=fa[top[x]];
Modify(rt[i],1,n,1,dfn[x]);
}
ll ans=0;
int L,R;
while(Q--)
{
ll u=read(),a=read(),b=read();
L=min((ans+a)%A,(ans+b)%A);
R=max((ans+a)%A,(ans+b)%A);
L=lower_bound(&S[1],&S[tot+1],L)-S;
R=lower_bound(&S[1],&S[tot+1],R+1)-S-1;
ans=1ll*(R-L+1)*dis[u]+sdis[R]-sdis[L-1]-2ll*(Calc(u,R)-Calc(u,L-1));
printf("%lld\n",ans);
}
return 0;
}