码迷,mamicode.com
首页 > 系统相关 > 详细

linux内核数据结构之kfifo

时间:2018-02-25 13:18:51      阅读:254      评论:0      收藏:0      [点我收藏+]

标签:his   erro   cal   com   学习   改变   好处   方法   smp   

1、前言

  最近项目中用到一个环形缓冲区(ring buffer),代码是由linux内核的kfifo改过来的。缓冲区在文件系统中经常用到,通过缓冲区缓解cpu读写内存和读写磁盘的速度。例如一个进程A产生数据发给另外一个进程B,进程B需要对进程A传的数据进行处理并写入文件,如果B没有处理完,则A要延迟发送。为了保证进程A减少等待时间,可以在A和B之间采用一个缓冲区,A每次将数据存放在缓冲区中,B每次冲缓冲区中取。这是典型的生产者和消费者模型,缓冲区中数据满足FIFO特性,因此可以采用队列进行实现。Linux内核的kfifo正好是一个环形队列,可以用来当作环形缓冲区。生产者与消费者使用缓冲区如下图所示:

技术分享图片

  环形缓冲区的详细介绍及实现方法可以参考http://en.wikipedia.org/wiki/Circular_buffer,介绍的非常详细,列举了实现环形队列的几种方法。环形队列的不便之处在于如何判断队列是空还是满。维基百科上给三种实现方法。

2、linux 内核kfifo

  kfifo设计的非常巧妙,代码很精简,对于入队和出对处理的出人意料。首先看一下kfifo的数据结构:

技术分享图片
struct kfifo {
    unsigned char *buffer;     /* the buffer holding the data */
    unsigned int size;         /* the size of the allocated buffer */
    unsigned int in;           /* data is added at offset (in % size) */
    unsigned int out;          /* data is extracted from off. (out % size) */
    spinlock_t *lock;          /* protects concurrent modifications */
};
技术分享图片

kfifo提供的方法有:

技术分享图片
 1 //根据给定buffer创建一个kfifo
 2 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
 3                 gfp_t gfp_mask, spinlock_t *lock);
 4 //给定size分配buffer和kfifo
 5 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask,
 6                  spinlock_t *lock);
 7 //释放kfifo空间
 8 void kfifo_free(struct kfifo *fifo)
 9 //向kfifo中添加数据
10 unsigned int kfifo_put(struct kfifo *fifo,
11                 const unsigned char *buffer, unsigned int len)
12 //从kfifo中取数据
13 unsigned int kfifo_put(struct kfifo *fifo,
14                 const unsigned char *buffer, unsigned int len)
15 //获取kfifo中有数据的buffer大小
16 unsigned int kfifo_len(struct kfifo *fifo)
技术分享图片

       定义自旋锁的目的为了防止多进程/线程并发使用kfifo。因为in和out在每次get和out时,发生改变。初始化和创建kfifo的源代码如下:

技术分享图片
 1 struct kfifo *kfifo_init(unsigned char *buffer, unsigned int size,
 2              gfp_t gfp_mask, spinlock_t *lock)
 3 {
 4     struct kfifo *fifo;
 6     /* size must be a power of 2 */
 7     BUG_ON(!is_power_of_2(size));
 9     fifo = kmalloc(sizeof(struct kfifo), gfp_mask);
10     if (!fifo)
11         return ERR_PTR(-ENOMEM);
13     fifo->buffer = buffer;
14     fifo->size = size;
15     fifo->in = fifo->out = 0;
16     fifo->lock = lock;
17 
18     return fifo;
19 }
20 struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
21 {
22     unsigned char *buffer;
23     struct kfifo *ret;
29     if (!is_power_of_2(size)) {
30         BUG_ON(size > 0x80000000);
31         size = roundup_pow_of_two(size);
32     }
34     buffer = kmalloc(size, gfp_mask);
35     if (!buffer)
36         return ERR_PTR(-ENOMEM);
38     ret = kfifo_init(buffer, size, gfp_mask, lock);
39 
40     if (IS_ERR(ret))
41         kfree(buffer);
43     return ret;
44 }
技术分享图片

  在kfifo_init和kfifo_calloc中,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻--对kfifo->size取模运算可以转化为与运算,如:kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

      kfifo的巧妙之处在于in和out定义为无符号类型,在put和get时,in和out都是增加,当达到最大值时,产生溢出,使得从0开始,进行循环使用。put和get代码如下所示:

技术分享图片
 1 static inline unsigned int kfifo_put(struct kfifo *fifo,
 2                 const unsigned char *buffer, unsigned int len)
 3 {
 4     unsigned long flags;
 5     unsigned int ret;
 6     spin_lock_irqsave(fifo->lock, flags);
 7     ret = __kfifo_put(fifo, buffer, len);
 8     spin_unlock_irqrestore(fifo->lock, flags);
 9     return ret;
10 }
11 
12 static inline unsigned int kfifo_get(struct kfifo *fifo,
13                      unsigned char *buffer, unsigned int len)
14 {
15     unsigned long flags;
16     unsigned int ret;
17     spin_lock_irqsave(fifo->lock, flags);
18     ret = __kfifo_get(fifo, buffer, len);
19         //当fifo->in == fifo->out时,buufer为空
20     if (fifo->in == fifo->out)
21         fifo->in = fifo->out = 0;
22     spin_unlock_irqrestore(fifo->lock, flags);
23     return ret;
24 }
25 
26 
27 unsigned int __kfifo_put(struct kfifo *fifo,
28             const unsigned char *buffer, unsigned int len)
29 {
30     unsigned int l;
31        //buffer中空的长度
32     len = min(len, fifo->size - fifo->in + fifo->out);
34     /*
35      * Ensure that we sample the fifo->out index -before- we
36      * start putting bytes into the kfifo.
37      */
39     smp_mb();
41     /* first put the data starting from fifo->in to buffer end */
42     l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
43     memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);
45     /* then put the rest (if any) at the beginning of the buffer */
46     memcpy(fifo->buffer, buffer + l, len - l);
47 
48     /*
49      * Ensure that we add the bytes to the kfifo -before-
50      * we update the fifo->in index.
51      */
53     smp_wmb();
55     fifo->in += len;  //每次累加,到达最大值后溢出,自动转为0
57     return len;
58 }
59 
60 unsigned int __kfifo_get(struct kfifo *fifo,
61              unsigned char *buffer, unsigned int len)
62 {
63     unsigned int l;
64         //有数据的缓冲区的长度
65     len = min(len, fifo->in - fifo->out);
67     /*
68      * Ensure that we sample the fifo->in index -before- we
69      * start removing bytes from the kfifo.
70      */
72     smp_rmb();
74     /* first get the data from fifo->out until the end of the buffer */
75     l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
76     memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);
78     /* then get the rest (if any) from the beginning of the buffer */
79     memcpy(buffer + l, fifo->buffer, len - l);
81     /*
82      * Ensure that we remove the bytes from the kfifo -before-
83      * we update the fifo->out index.
84      */
86     smp_mb();
88     fifo->out += len; //每次累加,到达最大值后溢出,自动转为0
90     return len;
91 }
技术分享图片

  put和get在调用__put和__get过程都进行加锁,防止并发。从代码中可以看出put和get都调用两次memcpy,这针对的是边界条件。例如下图:蓝色表示空闲,红色表示占用。

(1)空的kfifo,

技术分享图片

(2)put一个buffer后

技术分享图片

(3)get一个buffer后

技术分享图片

(4)当此时put的buffer长度超出in到末尾长度时,则将剩下的移到头部去

技术分享图片

3、测试程序

 仿照kfifo编写一个ring_buffer,现有线程互斥量进行并发控制。设计的ring_buffer如下所示:

技术分享图片
  1 /**@brief 仿照linux kfifo写的ring buffer
  2  *@atuher Anker  date:2013-12-18
  3 * ring_buffer.h
  4  * */
  5 
  6 #ifndef KFIFO_HEADER_H 
  7 #define KFIFO_HEADER_H
  8 
  9 #include <inttypes.h>
 10 #include <string.h>
 11 #include <stdlib.h>
 12 #include <stdio.h>
 13 #include <errno.h>
 14 #include <assert.h>
 15 
 16 //判断x是否是2的次方
 17 #define is_power_of_2(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
 18 //取a和b中最小值
 19 #define min(a, b) (((a) < (b)) ? (a) : (b))
 20 
 21 struct ring_buffer
 22 {
 23     void         *buffer;     //缓冲区
 24     uint32_t     size;       //大小
 25     uint32_t     in;         //入口位置
 26     uint32_t       out;        //出口位置
 27     pthread_mutex_t *f_lock;    //互斥锁
 28 };
 29 //初始化缓冲区
 30 struct ring_buffer* ring_buffer_init(void *buffer, uint32_t size, pthread_mutex_t *f_lock)
 31 {
 32     assert(buffer);
 33     struct ring_buffer *ring_buf = NULL;
 34     if (!is_power_of_2(size))
 35     {
 36     fprintf(stderr,"size must be power of 2.\n");
 37         return ring_buf;
 38     }
 39     ring_buf = (struct ring_buffer *)malloc(sizeof(struct ring_buffer));
 40     if (!ring_buf)
 41     {
 42         fprintf(stderr,"Failed to malloc memory,errno:%u,reason:%s",
 43             errno, strerror(errno));
 44         return ring_buf;
 45     }
 46     memset(ring_buf, 0, sizeof(struct ring_buffer));
 47     ring_buf->buffer = buffer;
 48     ring_buf->size = size;
 49     ring_buf->in = 0;
 50     ring_buf->out = 0;
 51         ring_buf->f_lock = f_lock;
 52     return ring_buf;
 53 }
 54 //释放缓冲区
 55 void ring_buffer_free(struct ring_buffer *ring_buf)
 56 {
 57     if (ring_buf)
 58     {
 59     if (ring_buf->buffer)
 60     {
 61         free(ring_buf->buffer);
 62         ring_buf->buffer = NULL;
 63     }
 64     free(ring_buf);
 65     ring_buf = NULL;
 66     }
 67 }
 68 
 69 //缓冲区的长度
 70 uint32_t __ring_buffer_len(const struct ring_buffer *ring_buf)
 71 {
 72     return (ring_buf->in - ring_buf->out);
 73 }
 74 
 75 //从缓冲区中取数据
 76 uint32_t __ring_buffer_get(struct ring_buffer *ring_buf, void * buffer, uint32_t size)
 77 {
 78     assert(ring_buf || buffer);
 79     uint32_t len = 0;
 80     size  = min(size, ring_buf->in - ring_buf->out);        
 81     /* first get the data from fifo->out until the end of the buffer */
 82     len = min(size, ring_buf->size - (ring_buf->out & (ring_buf->size - 1)));
 83     memcpy(buffer, ring_buf->buffer + (ring_buf->out & (ring_buf->size - 1)), len);
 84     /* then get the rest (if any) from the beginning of the buffer */
 85     memcpy(buffer + len, ring_buf->buffer, size - len);
 86     ring_buf->out += size;
 87     return size;
 88 }
 89 //向缓冲区中存放数据
 90 uint32_t __ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
 91 {
 92     assert(ring_buf || buffer);
 93     uint32_t len = 0;
 94     size = min(size, ring_buf->size - ring_buf->in + ring_buf->out);
 95     /* first put the data starting from fifo->in to buffer end */
 96     len  = min(size, ring_buf->size - (ring_buf->in & (ring_buf->size - 1)));
 97     memcpy(ring_buf->buffer + (ring_buf->in & (ring_buf->size - 1)), buffer, len);
 98     /* then put the rest (if any) at the beginning of the buffer */
 99     memcpy(ring_buf->buffer, buffer + len, size - len);
100     ring_buf->in += size;
101     return size;
102 }
103 
104 uint32_t ring_buffer_len(const struct ring_buffer *ring_buf)
105 {
106     uint32_t len = 0;
107     pthread_mutex_lock(ring_buf->f_lock);
108     len = __ring_buffer_len(ring_buf);
109     pthread_mutex_unlock(ring_buf->f_lock);
110     return len;
111 }
112 
113 uint32_t ring_buffer_get(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
114 {
115     uint32_t ret;
116     pthread_mutex_lock(ring_buf->f_lock);
117     ret = __ring_buffer_get(ring_buf, buffer, size);
118     //buffer中没有数据
119     if (ring_buf->in == ring_buf->out)
120     ring_buf->in = ring_buf->out = 0;
121     pthread_mutex_unlock(ring_buf->f_lock);
122     return ret;
123 }
124 
125 uint32_t ring_buffer_put(struct ring_buffer *ring_buf, void *buffer, uint32_t size)
126 {
127     uint32_t ret;
128     pthread_mutex_lock(ring_buf->f_lock);
129     ret = __ring_buffer_put(ring_buf, buffer, size);
130     pthread_mutex_unlock(ring_buf->f_lock);
131     return ret;
132 }
133 #endif
技术分享图片

采用多线程模拟生产者和消费者编写测试程序,如下所示:

技术分享图片
  1 /**@brief ring buffer测试程序,创建两个线程,一个生产者,一个消费者。
  2  * 生产者每隔1秒向buffer中投入数据,消费者每隔2秒去取数据。
  3  *@atuher Anker  date:2013-12-18
  4  * */
  5 #include "ring_buffer.h"
  6 #include <pthread.h>
  7 #include <time.h>
  8 
  9 #define BUFFER_SIZE  1024 * 1024
 10 
 11 typedef struct student_info
 12 {
 13     uint64_t stu_id;
 14     uint32_t age;
 15     uint32_t score;
 16 }student_info;
 17 
 18 
 19 void print_student_info(const student_info *stu_info)
 20 {
 21     assert(stu_info);
 22     printf("id:%lu\t",stu_info->stu_id);
 23     printf("age:%u\t",stu_info->age);
 24     printf("score:%u\n",stu_info->score);
 25 }
 26 
 27 student_info * get_student_info(time_t timer)
 28 {
 29     student_info *stu_info = (student_info *)malloc(sizeof(student_info));
 30     if (!stu_info)
 31     {
 32     fprintf(stderr, "Failed to malloc memory.\n");
 33     return NULL;
 34     }
 35     srand(timer);
 36     stu_info->stu_id = 10000 + rand() % 9999;
 37     stu_info->age = rand() % 30;
 38     stu_info->score = rand() % 101;
 39     print_student_info(stu_info);
 40     return stu_info;
 41 }
 42 
 43 void * consumer_proc(void *arg)
 44 {
 45     struct ring_buffer *ring_buf = (struct ring_buffer *)arg;
 46     student_info stu_info; 
 47     while(1)
 48     {
 49     sleep(2);
 50     printf("------------------------------------------\n");
 51     printf("get a student info from ring buffer.\n");
 52     ring_buffer_get(ring_buf, (void *)&stu_info, sizeof(student_info));
 53     printf("ring buffer length: %u\n", ring_buffer_len(ring_buf));
 54     print_student_info(&stu_info);
 55     printf("------------------------------------------\n");
 56     }
 57     return (void *)ring_buf;
 58 }
 59 
 60 void * producer_proc(void *arg)
 61 {
 62     time_t cur_time;
 63     struct ring_buffer *ring_buf = (struct ring_buffer *)arg;
 64     while(1)
 65     {
 66     time(&cur_time);
 67     srand(cur_time);
 68     int seed = rand() % 11111;
 69     printf("******************************************\n");
 70     student_info *stu_info = get_student_info(cur_time + seed);
 71     printf("put a student info to ring buffer.\n");
 72     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
 73     printf("ring buffer length: %u\n", ring_buffer_len(ring_buf));
 74     printf("******************************************\n");
 75     sleep(1);
 76     }
 77     return (void *)ring_buf;
 78 }
 79 
 80 int consumer_thread(void *arg)
 81 {
 82     int err;
 83     pthread_t tid;
 84     err = pthread_create(&tid, NULL, consumer_proc, arg);
 85     if (err != 0)
 86     {
 87     fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n",
 88         errno, strerror(errno));
 89     return -1;
 90     }
 91     return tid;
 92 }
 93 int producer_thread(void *arg)
 94 {
 95     int err;
 96     pthread_t tid;
 97     err = pthread_create(&tid, NULL, producer_proc, arg);
 98     if (err != 0)
 99     {
100     fprintf(stderr, "Failed to create consumer thread.errno:%u, reason:%s\n",
101         errno, strerror(errno));
102     return -1;
103     }
104     return tid;
105 }
106 
107 
108 int main()
109 {
110     void * buffer = NULL;
111     uint32_t size = 0;
112     struct ring_buffer *ring_buf = NULL;
113     pthread_t consume_pid, produce_pid;
114 
115     pthread_mutex_t *f_lock = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t));
116     if (pthread_mutex_init(f_lock, NULL) != 0)
117     {
118     fprintf(stderr, "Failed init mutex,errno:%u,reason:%s\n",
119         errno, strerror(errno));
120     return -1;
121     }
122     buffer = (void *)malloc(BUFFER_SIZE);
123     if (!buffer)
124     {
125     fprintf(stderr, "Failed to malloc memory.\n");
126     return -1;
127     }
128     size = BUFFER_SIZE;
129     ring_buf = ring_buffer_init(buffer, size, f_lock);
130     if (!ring_buf)
131     {
132     fprintf(stderr, "Failed to init ring buffer.\n");
133     return -1;
134     }
135 #if 0
136     student_info *stu_info = get_student_info(638946124);
137     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
138     stu_info = get_student_info(976686464);
139     ring_buffer_put(ring_buf, (void *)stu_info, sizeof(student_info));
140     ring_buffer_get(ring_buf, (void *)stu_info, sizeof(student_info));
141     print_student_info(stu_info);
142 #endif
143     printf("multi thread test.......\n");
144     produce_pid  = producer_thread((void*)ring_buf);
145     consume_pid  = consumer_thread((void*)ring_buf);
146     pthread_join(produce_pid, NULL);
147     pthread_join(consume_pid, NULL);
148     ring_buffer_free(ring_buf);
149     free(f_lock);
150     return 0;
151 }
技术分享图片

测试结果如下所示:

技术分享图片

4、参考资料

http://blog.csdn.net/linyt/article/details/5764312

http://en.wikipedia.org/wiki/Circular_buffer

 

 

巧夺天工的kfifo

Linux kernel里面从来就不缺少简洁,优雅和高效的代码,只是我们缺少发现和品味的眼光。在Linux kernel里面,简洁并不表示代码使用神出鬼没的超然技巧,相反,它使用的不过是大家非常熟悉的基础数据结构,但是kernel开发者能从基础的数据结构中,提炼出优美的特性。
kfifo就是这样的一类优美代码,它十分简洁,绝无多余的一行代码,却非常高效。
关于kfifo信息如下:

本文分析的原代码版本: 2.6.24.4

kfifo的定义文件: kernel/kfifo.c

kfifo的头文件: include/linux/kfifo.h

kfifo概述

kfifo是内核里面的一个First In First Out数据结构,它采用环形循环队列的数据结构来实现;它提供一个无边界的字节流服务,最重要的一点是,它使用并行无锁编程技术,即当它用于只有一个入队线程和一个出队线程的场情时,两个线程可以并发操作,而不需要任何加锁行为,就可以保证kfifo的线程安全。
kfifo代码既然肩负着这么多特性,那我们先一敝它的代码:

struct kfifo {
    unsigned char *buffer;    /* the buffer holding the data */
    unsigned int size;    /* the size of the allocated buffer */
    unsigned int in;    /* data is added at offset (in % size) */
    unsigned int out;    /* data is extracted from off. (out % size) */
    spinlock_t *lock;    /* protects concurrent modifications */
};

这是kfifo的数据结构,kfifo主要提供了两个操作,__kfifo_put(入队操作)和__kfifo_get(出队操作)。 它的各个数据成员如下:

buffer: 用于存放数据的缓存

size: buffer空间的大小,在初化时,将它向上扩展成2的幂

lock: 如果使用不能保证任何时间最多只有一个读线程和写线程,需要使用该lock实施同步。

in, out: 和buffer一起构成一个循环队列。 in指向buffer中队头,而且out指向buffer中的队尾,它的结构如示图如下:

+--------------------------------------------------------------+
|            |<----------data---------->|                      |
+--------------------------------------------------------------+
             ^                          ^                      ^
             |                          |                      |
            out                        in                     size

当然,内核开发者使用了一种更好的技术处理了in, out和buffer的关系,我们将在下面进行详细分析。

 

kfifo功能描述

kfifo提供如下对外功能规格

  1. 只支持一个读者和一个读者并发操作
  2. 无阻塞的读写操作,如果空间不够,则返回实际访问空间

kfifo_alloc 分配kfifo内存和初始化工作

struct kfifo *kfifo_alloc(unsigned int size, gfp_t gfp_mask, spinlock_t *lock)
{
    unsigned char *buffer;
    struct kfifo *ret;

    /*
     * round up to the next power of 2, since our ‘let the indices
     * wrap‘ tachnique works only in this case.
     */
    if (size & (size - 1)) {
        BUG_ON(size > 0x80000000);
        size = roundup_pow_of_two(size);
    }

    buffer = kmalloc(size, gfp_mask);
    if (!buffer)
        return ERR_PTR(-ENOMEM);

    ret = kfifo_init(buffer, size, gfp_mask, lock);

    if (IS_ERR(ret))
        kfree(buffer);

    return ret;
}

这里值得一提的是,kfifo->size的值总是在调用者传进来的size参数的基础上向2的幂扩展,这是内核一贯的做法。这样的好处不言而喻——对kfifo->size取模运算可以转化为与运算,如下:

kfifo->in % kfifo->size 可以转化为 kfifo->in & (kfifo->size – 1)

在kfifo_alloc函数中,使用size & (size – 1)来判断size 是否为2幂,如果条件为真,则表示size不是2的幂,然后调用roundup_pow_of_two将之向上扩展为2的幂。

这都是常用的技巧,只不过大家没有将它们结合起来使用而已,下面要分析的__kfifo_put和__kfifo_get则是将kfifo->size的特点发挥到了极致。

 

__kfifo_put和__kfifo_get巧妙的入队和出队

__kfifo_put是入队操作,它先将数据放入buffer里面,最后才修改in参数;__kfifo_get是出队操作,它先将数据从buffer中移走,最后才修改out。你会发现in和out两者各司其职。

下面是__kfifo_put和__kfifo_get的代码

unsigned int __kfifo_put(struct kfifo *fifo,
             unsigned char *buffer, unsigned int len)
{
    unsigned int l;

    len = min(len, fifo->size - fifo->in + fifo->out);

    /*
     * Ensure that we sample the fifo->out index -before- we
     * start putting bytes into the kfifo.
     */

    smp_mb();

    /* first put the data starting from fifo->in to buffer end */
    l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));
    memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);

    /* then put the rest (if any) at the beginning of the buffer */
    memcpy(fifo->buffer, buffer + l, len - l);

    /*
     * Ensure that we add the bytes to the kfifo -before-
     * we update the fifo->in index.
     */

    smp_wmb();

    fifo->in += len;

    return len;
}

奇怪吗?代码完全是线性结构,没有任何if-else分支来判断是否有足够的空间存放数据。内核在这里的代码非常简洁,没有一行多余的代码。

l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));

这个表达式计算当前写入的空间,换成人可理解的语言就是:

l = kfifo可写空间和预期写入空间的最小值

使用min宏来代if-else分支

__kfifo_get也应用了同样技巧,代码如下:

unsigned int __kfifo_get(struct kfifo *fifo,
             unsigned char *buffer, unsigned int len)
{
    unsigned int l;

    len = min(len, fifo->in - fifo->out);

    /*
     * Ensure that we sample the fifo->in index -before- we
     * start removing bytes from the kfifo.
     */

    smp_rmb();

    /* first get the data from fifo->out until the end of the buffer */
    l = min(len, fifo->size - (fifo->out & (fifo->size - 1)));
    memcpy(buffer, fifo->buffer + (fifo->out & (fifo->size - 1)), l);

    /* then get the rest (if any) from the beginning of the buffer */
    memcpy(buffer + l, fifo->buffer, len - l);

    /*
     * Ensure that we remove the bytes from the kfifo -before-
     * we update the fifo->out index.
     */

    smp_mb();

    fifo->out += len;

    return len;
}

认真读两遍吧,我也读了多次,每次总是有新发现,因为in, out和size的关系太巧妙了,竟然能利用上unsigned int回绕的特性。

原来,kfifo每次入队或出队,kfifo->in或kfifo->out只是简单地kfifo->in/kfifo->out += len,并没有对kfifo->size 进行取模运算。因此kfifo->in和kfifo->out总是一直增大,直到unsigned in最大值时,又会绕回到0这一起始端。但始终满足:

kfifo->in - kfifo->out <= kfifo->size

即使kfifo->in回绕到了0的那一端,这个性质仍然是保持的。

对于给定的kfifo:

数据空间长度为:kfifo->in - kfifo->out

而剩余空间(可写入空间)长度为:kfifo->size - (kfifo->in - kfifo->out)

尽管kfifo->in和kfofo->out一直超过kfifo->size进行增长,但它对应在kfifo->buffer空间的下标却是如下:

kfifo->in % kfifo->size (i.e. kfifo->in & (kfifo->size - 1))

kfifo->out % kfifo->size (i.e. kfifo->out & (kfifo->size - 1))

往kfifo里面写一块数据时,数据空间、写入空间和kfifo->size的关系如果满足:

kfifo->in % size + len > size

那就要做写拆分了,见下图:

                                                    kfifo_put(写)空间开始地址
                                                    |
                                                   \_/
                                                    |XXXXXXXXXX
XXXXXXXX|                                                    
+--------------------------------------------------------------+
|                        |<----------data---------->|          |
+--------------------------------------------------------------+
                         ^                          ^          ^
                         |                          |          |
                       out%size                   in%size     size
        ^
        |
      写空间结束地址                      

第一块当然是: [kfifo->in % kfifo->size, kfifo->size]
第二块当然是:[0, len - (kfifo->size - kfifo->in % kfifo->size)]

下面是代码,细细体味吧:

/* first put the data starting from fifo->in to buffer end */   
l = min(len, fifo->size - (fifo->in & (fifo->size - 1)));   
memcpy(fifo->buffer + (fifo->in & (fifo->size - 1)), buffer, l);   

/* then put the rest (if any) at the beginning of the buffer */   
memcpy(fifo->buffer, buffer + l, len - l);  

对于kfifo_get过程,也是类似的,请各位自行分析。

 

kfifo_get和kfifo_put无锁并发操作

计算机科学家已经证明,当只有一个读经程和一个写线程并发操作时,不需要任何额外的锁,就可以确保是线程安全的,也即kfifo使用了无锁编程技术,以提高kernel的并发。

kfifo使用in和out两个指针来描述写入和读取游标,对于写入操作,只更新in指针,而读取操作,只更新out指针,可谓井水不犯河水,示意图如下:

                                               |<--写入-->|
+--------------------------------------------------------------+
|                        |<----------data----->|               |
+--------------------------------------------------------------+
                         |<--读取-->|
                         ^                     ^               ^
                         |                     |               |
                        out                   in              size

为了避免读者看到写者预计写入,但实际没有写入数据的空间,写者必须保证以下的写入顺序:

  1. 往[kfifo->in, kfifo->in + len]空间写入数据
  2. 更新kfifo->in指针为 kfifo->in + len

在操作1完成时,读者是还没有看到写入的信息的,因为kfifo->in没有变化,认为读者还没有开始写操作,只有更新kfifo->in之后,读者才能看到。

那么如何保证1必须在2之前完成,秘密就是使用内存屏障:smp_mb(),smp_rmb(), smp_wmb(),来保证对方观察到的内存操作顺序。

 

总结

读完kfifo代码,令我想起那首诗“众里寻他千百度,默然回首,那人正在灯火阑珊处”。不知你是否和我一样,总想追求简洁,高质量和可读性的代码,当用尽各种方法,江郞才尽之时,才发现Linux kernel里面的代码就是我们寻找和学习的对象。

linux内核数据结构之kfifo

标签:his   erro   cal   com   学习   改变   好处   方法   smp   

原文地址:https://www.cnblogs.com/alantu2018/p/8468969.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!