【POJ 1716】Integer Intervals(差分约束系统)
Integer Intervals
| Time Limit: 1000MS | ? | Memory Limit: 10000K | 
| Total Submissions: 13425 | ? | Accepted: 5703 | 
Description
An integer interval [a,b], a < b, is a set of all consecutive integers beginning with a and ending with b.
Write a program that: finds the minimal number of elements in a set containing at least two different integers from each interval.
Write a program that: finds the minimal number of elements in a set containing at least two different integers from each interval.
Input
The first line of the input contains the number of intervals n, 1 <= n <= 10000. Each of the following n lines contains two integers a, b separated by a single space, 0 <= a < b <= 10000. They are the beginning and the end of an
 interval. 
Output
Output the minimal number of elements in a set containing at least two different integers from each interval.
Sample Input
4 3 6 2 4 0 2 4 7
Sample Output
4
Source
实训回来后的一血~~
差分约束系统,走前看了点,没搞透,做完这题略微有点明确了。
这题是差分约束系统入门题,关于差分约束系统。百度各种大牛博客讲的都非常具体。简单说就是通过不等关系建立约束系统图,然后跑最短路(大于关系则跑最长路)
回到此题,题目要求找出一个最小集合S,满足对于n个范围[ai,bi],S中存在两个及两个以上不同的点在范围内
令Zi表示满足条件的情况下。0~i点至少有多少点在集合内
则Zb-Za >= 2
仅仅有这一个条件构造出来的图可能不是全然连通的,所以须要找一些“隐含条件”
不难发现 对于相邻的点 0 <= Zi-Z(i-1) <= 1 保证关系符同样 转化为
Zi-Z(i-1) >= 0 
Z(i-1)-Zi >= -1
用这三个关系,就可以构造差分约束系统,然后SPFA或者Bellman跑一趟最长路(满足全部条件)
代码例如以下:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <queue>
using namespace std;
const int INF = 0x3f3f3f3f;
const int msz = 1e5;
const int mod = 1e9+7;
const double eps = 1e-8;
struct Edge
{
	int v,w,next;
};
Edge eg[233333];
int head[50050];
bool vis[50050];
int dis[50050];
int tp,st,en;
void Add(int u,int v,int w)
{
	eg[tp].v = v;
	eg[tp].w = w;
	eg[tp].next = head[u];
	head[u] = tp++;
}
int SPFA()
{
	memset(vis,0,sizeof(vis));
	memset(dis,-INF,sizeof(dis));
	queue <int> q;
	dis[st] = 0;
	vis[st] = 1;
	int u,v,w;
	q.push(st);
	while(!q.empty())
	{
		u = q.front();
		q.pop();
		vis[u] = 0;
		for(int i = head[u]; i != -1; i = eg[i].next)
		{
			v = eg[i].v;
			w = eg[i].w;
			if(dis[v] < dis[u]+w)
			{
				dis[v] = dis[u]+w;
				if(!vis[v]) 
				{
					q.push(v);
					vis[v] = 1;
				}
			}
		}
	}
	return dis[en];
}
int main(int argc,char **argv)
{
	int n;
	int u,v;
	while(~scanf("%d",&n))
	{
		tp = 0;
		memset(head,-1,sizeof(head));
		
		en = 0,st = INF;
		while(n--)
		{
			scanf("%d%d",&u,&v);
			Add(u,v+1,2);
			//最小点做起点 最大点做终点
			en = max(en,v+1);
			st = min(st,u);
		}
		for(int i = st; i < en; ++i)
		{
			Add(i,i+1,0);
			Add(i+1,i,-1);
		}
		printf("%d\n",SPFA());
	}
	return 0;
} 
        