标签:return LLC init 测试 之间 axis not 自己 table
真正掌握一种算法,最实际的方法,完全手写出来。
LSTM(Long Short Tem Memory)特殊递归神经网络,神经元保存历史记忆,解决自然语言处理统计方法只能考虑最近n个词语而忽略更久前词语的问题。用途:word representation(embedding)(词语向量)、sequence to sequence learning(输入句子预测句子)、机器翻译、语音识别等。
 
100多行原始python代码实现基于LSTM二进制加法器。https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/ ,翻译http://blog.csdn.net/zzukun/article/details/49968129 :
    import copy, numpy as np
    np.random.seed(0)
最开始引入numpy库,矩阵操作。
    def sigmoid(x):
        output = 1/(1+np.exp(-x))
        return output
声明sigmoid激活函数,神经网络基础内容,常用激活函数sigmoid、tan、relu等,sigmoid取值范围[0, 1],tan取值范围[-1,1],x是向量,返回output是向量。
    def sigmoid_output_to_derivative(output):
        return output*(1-output)
声明sigmoid求导函数。
加法器思路:二进制加法是二进制位相加,记录满二进一进位,训练时随机c=a+b样本,输入a、b输出c是整个lstm预测过程,训练由a、b二进制向c各种转换矩阵和权重,神经网络。
    int2binary = {}
声明词典,由整型数字转成二进制,存起来不用随时计算,提前存好读取更快。
    binary_dim = 8
largest_number = pow(2,binary_dim)
声明二进制数字维度,8,二进制能表达最大整数2^8=256,largest_number。
    binary = np.unpackbits(
                           np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
    for i in range(largest_number):
        int2binary[i] = binary[i]
预先把整数到二进制转换词典存起来。
    alpha = 0.1
    input_dim = 2
    hidden_dim = 16
    output_dim = 1
设置参数,alpha是学习速度,input_dim是输入层向量维度,输入a、b两个数,是2,hidden_dim是隐藏层向量维度,隐藏层神经元个数,output_dim是输出层向量维度,输出一个c,是1维。从输入层到隐藏层权重矩阵是2*16维,从隐藏层到输出层权重矩阵是16*1维,隐藏层到隐藏层权重矩阵是16*16维:
    synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
    synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
    synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1
2x-1,np.random.random生成从0到1之间随机浮点数,2x-1使其取值范围在[-1, 1]。
    synapse_0_update = np.zeros_like(synapse_0)
    synapse_1_update = np.zeros_like(synapse_1)
    synapse_h_update = np.zeros_like(synapse_h)
声明三个矩阵更新,Delta。
    for j in range(10000):
进行10000次迭代。
    a_int = np.random.randint(largest_number/2)
    a = int2binary[a_int]
    b_int = np.random.randint(largest_number/2)
    b = int2binary[b_int]
    c_int = a_int + b_int
    c = int2binary[c_int]
随机生成样本,包含二进制a、b、c,c=a+b,a_int、b_int、c_int分别是a、b、c对应整数格式。
    d = np.zeros_like(c)
d存模型对c预测值。
    overallError = 0
全局误差,观察模型效果。
layer_2_deltas = list()
存储第二层(输出层)残差,输出层残差计算公式推导公式http://deeplearning.stanford.edu/wiki/index.php/%E5%8F%8D%E5%90%91%E4%BC%A0%E5%AF%BC%E7%AE%97%E6%B3%95 。
    layer_1_values = list()
    layer_1_values.append(np.zeros(hidden_dim))
存储第一层(隐藏层)输出值,赋0值作为上一个时间值。
    for position in range(binary_dim):
遍历二进制每一位。
    X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
    y = np.array([[c[binary_dim - position - 1]]]).T
X和y分别是样本输入和输出二进制值第position位,X对于每个样本有两个值,分别是a和b对应第position位。把样本拆成每个二进制位用于训练,二进制加法存在进位标记正好适合利用LSTM长短期记忆训练,每个样本8个二进制位是一个时间序列。
    layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))
公式Ct = sigma(W0·Xt + Wh·Ct-1)
    layer_2 = sigmoid(np.dot(layer_1,synapse_1))
这里使用的公式是C2 = sigma(W1·C1),
    layer_2_error = y - layer_2
计算预测值和真实值误差。
    layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
反向传导,计算delta,添加到数组layer_2_deltas
    overallError += np.abs(layer_2_error[0])
计算累加总误差,用于展示和观察。
    d[binary_dim - position - 1] = np.round(layer_2[0][0])
存储预测position位输出值。
    layer_1_values.append(copy.deepcopy(layer_1))
存储中间过程生成隐藏层值。
    future_layer_1_delta = np.zeros(hidden_dim)
存储下一个时间周期隐藏层历史记忆值,先赋一个空值。
    for position in range(binary_dim):
遍历二进制每一位。
    X = np.array([[a[position],b[position]]])
取出X值,从大位开始更新,反向传导按时序逆着一级一级更新。
    layer_1 = layer_1_values[-position-1]
取出位对应隐藏层输出。
    prev_layer_1 = layer_1_values[-position-2]
取出位对应隐藏层上一时序输出。
    layer_2_delta = layer_2_deltas[-position-1]
取出位对应输出层delta。
    layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
神经网络反向传导公式,加上隐藏层?值。
    synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
累加权重矩阵更新,对权重(权重矩阵)偏导等于本层输出与下一层delta点乘。
    synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
前一时序隐藏层权重矩阵更新,前一时序隐藏层输出与本时序delta点乘。
    synapse_0_update += X.T.dot(layer_1_delta)
输入层权重矩阵更新。
    future_layer_1_delta = layer_1_delta
记录本时序隐藏层delta。
    synapse_0 += synapse_0_update * alpha
    synapse_1 += synapse_1_update * alpha
    synapse_h += synapse_h_update * alpha
权重矩阵更新。
    synapse_0_update *= 0
    synapse_1_update *= 0
    synapse_h_update *= 0
更新变量归零。
    if(j % 1000 == 0):
            print "Error:" + str(overallError)
            print "Pred:" + str(d)
            print "True:" + str(c)
            out = 0
            for index,x in enumerate(reversed(d)):
                out += x*pow(2,index)
            print str(a_int) + " + " + str(b_int) + " = " + str(out)
            print "------------"
每训练1000个样本输出总误差信息,运行时看收敛过程。
LSTM最简单实现,没有考虑偏置变量,只有两个神经元。
完整LSTM python实现。完全参照论文great intro paper实现,代码来源https://github.com/nicodjimenez/lstm ,作者解释http://nicodjimenez.github.io/2014/08/08/lstm.html ,具体过程参考http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 图。
    import random
    import numpy as np
    import math
    
    def sigmoid(x):
        return 1. / (1 + np.exp(-x))
声明sigmoid函数。
    def rand_arr(a, b, *args):
        np.random.seed(0)
        return np.random.rand(*args) * (b - a) + a
生成随机矩阵,取值范围[a,b),shape用args指定。
    class LstmParam:
        def __init__(self, mem_cell_ct, x_dim):
            self.mem_cell_ct = mem_cell_ct
            self.x_dim = x_dim
            concat_len = x_dim + mem_cell_ct
            # weight matrices
            self.wg = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
            self.wi = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
            self.wf = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
            self.wo = rand_arr(-0.1, 0.1, mem_cell_ct, concat_len)
            # bias terms
            self.bg = rand_arr(-0.1, 0.1, mem_cell_ct)
            self.bi = rand_arr(-0.1, 0.1, mem_cell_ct)
            self.bf = rand_arr(-0.1, 0.1, mem_cell_ct)
            self.bo = rand_arr(-0.1, 0.1, mem_cell_ct)
            # diffs (derivative of loss function w.r.t. all parameters)
            self.wg_diff = np.zeros((mem_cell_ct, concat_len))
            self.wi_diff = np.zeros((mem_cell_ct, concat_len))
            self.wf_diff = np.zeros((mem_cell_ct, concat_len))
            self.wo_diff = np.zeros((mem_cell_ct, concat_len))
            self.bg_diff = np.zeros(mem_cell_ct)
            self.bi_diff = np.zeros(mem_cell_ct)
            self.bf_diff = np.zeros(mem_cell_ct)
            self.bo_diff = np.zeros(mem_cell_ct)
LstmParam类传递参数,mem_cell_ct是lstm神经元数目,x_dim是输入数据维度,concat_len是mem_cell_ct与x_dim长度和,wg是输入节点权重矩阵,wi是输入门权重矩阵,wf是忘记门权重矩阵,wo是输出门权重矩阵,bg、bi、bf、bo分别是输入节点、输入门、忘记门、输出门偏置,wg_diff、wi_diff、wf_diff、wo_diff分别是输入节点、输入门、忘记门、输出门权重损失,bg_diff、bi_diff、bf_diff、bo_diff分别是输入节点、输入门、忘记门、输出门偏置损失,初始化按照矩阵维度初始化,损失矩阵归零。
        def apply_diff(self, lr = 1):
            self.wg -= lr * self.wg_diff
            self.wi -= lr * self.wi_diff
            self.wf -= lr * self.wf_diff
            self.wo -= lr * self.wo_diff
            self.bg -= lr * self.bg_diff
            self.bi -= lr * self.bi_diff
            self.bf -= lr * self.bf_diff
            self.bo -= lr * self.bo_diff
            # reset diffs to zero
            self.wg_diff = np.zeros_like(self.wg)
            self.wi_diff = np.zeros_like(self.wi)
            self.wf_diff = np.zeros_like(self.wf)
            self.wo_diff = np.zeros_like(self.wo)
            self.bg_diff = np.zeros_like(self.bg)
            self.bi_diff = np.zeros_like(self.bi)
            self.bf_diff = np.zeros_like(self.bf)
            self.bo_diff = np.zeros_like(self.bo)
定义权重更新过程,先减损失,再把损失矩阵归零。
    class LstmState:
        def __init__(self, mem_cell_ct, x_dim):
            self.g = np.zeros(mem_cell_ct)
            self.i = np.zeros(mem_cell_ct)
            self.f = np.zeros(mem_cell_ct)
            self.o = np.zeros(mem_cell_ct)
            self.s = np.zeros(mem_cell_ct)
            self.h = np.zeros(mem_cell_ct)
            self.bottom_diff_h = np.zeros_like(self.h)
            self.bottom_diff_s = np.zeros_like(self.s)
            self.bottom_diff_x = np.zeros(x_dim)
LstmState存储LSTM神经元状态,包括g、i、f、o、s、h,s是内部状态矩阵(记忆),h是隐藏层神经元输出矩阵。
    class LstmNode:
        def __init__(self, lstm_param, lstm_state):
            # store reference to parameters and to activations
            self.state = lstm_state
            self.param = lstm_param
            # non-recurrent input to node
            self.x = None
            # non-recurrent input concatenated with recurrent input
            self.xc = None
LstmNode对应样本输入,x是输入样本x,xc是用hstack把x和递归输入节点拼接矩阵(hstack是横拼矩阵,vstack是纵拼矩阵)。
        def bottom_data_is(self, x, s_prev = None, h_prev = None):
            # if this is the first lstm node in the network
            if s_prev == None: s_prev = np.zeros_like(self.state.s)
            if h_prev == None: h_prev = np.zeros_like(self.state.h)
            # save data for use in backprop
            self.s_prev = s_prev
            self.h_prev = h_prev
    
            # concatenate x(t) and h(t-1)
            xc = np.hstack((x,  h_prev))
            self.state.g = np.tanh(np.dot(self.param.wg, xc) + self.param.bg)
            self.state.i = sigmoid(np.dot(self.param.wi, xc) + self.param.bi)
            self.state.f = sigmoid(np.dot(self.param.wf, xc) + self.param.bf)
            self.state.o = sigmoid(np.dot(self.param.wo, xc) + self.param.bo)
            self.state.s = self.state.g * self.state.i + s_prev * self.state.f
            self.state.h = self.state.s * self.state.o
            self.x = x
            self.xc = xc
bottom和top是两个方向,输入样本从底部输入,反向传导从顶部向底部传导,bottom_data_is是输入样本过程,把x和先前输入拼接成矩阵,用公式wx+b分别计算g、i、f、o值,激活函数tanh和sigmoid。
每个时序神经网络有四个神经网络层(激活函数),最左边忘记门,直接生效到记忆C,第二个输入门,依赖输入样本数据,按照一定“比例”影响记忆C,“比例”通过第三个层(tanh)实现,取值范围是[-1,1]可以正向影响也可以负向影响,最后一个输出门,每一时序产生输出既依赖输入样本x和上一时序输出,还依赖记忆C,设计模仿生物神经元记忆功能。
        def top_diff_is(self, top_diff_h, top_diff_s):
            # notice that top_diff_s is carried along the constant error carousel
            ds = self.state.o * top_diff_h + top_diff_s
            do = self.state.s * top_diff_h
            di = self.state.g * ds
            dg = self.state.i * ds
            df = self.s_prev * ds
    
            # diffs w.r.t. vector inside sigma / tanh function
            di_input = (1. - self.state.i) * self.state.i * di
            df_input = (1. - self.state.f) * self.state.f * df
            do_input = (1. - self.state.o) * self.state.o * do
            dg_input = (1. - self.state.g ** 2) * dg
    
            # diffs w.r.t. inputs
            self.param.wi_diff += np.outer(di_input, self.xc)
            self.param.wf_diff += np.outer(df_input, self.xc)
            self.param.wo_diff += np.outer(do_input, self.xc)
            self.param.wg_diff += np.outer(dg_input, self.xc)
            self.param.bi_diff += di_input
            self.param.bf_diff += df_input
            self.param.bo_diff += do_input
            self.param.bg_diff += dg_input
    
            # compute bottom diff
            dxc = np.zeros_like(self.xc)
            dxc += np.dot(self.param.wi.T, di_input)
            dxc += np.dot(self.param.wf.T, df_input)
            dxc += np.dot(self.param.wo.T, do_input)
            dxc += np.dot(self.param.wg.T, dg_input)
    
            # save bottom diffs
            self.state.bottom_diff_s = ds * self.state.f
            self.state.bottom_diff_x = dxc[:self.param.x_dim]
            self.state.bottom_diff_h = dxc[self.param.x_dim:]
反向传导,整个训练过程核心。假设在t时刻lstm输出预测值h(t),实际输出值是y(t),之间差别是损失,假设损失函数为l(t) = f(h(t), y(t)) = ||h(t) - y(t)||^2,欧式距离,整体损失函数是L(t) = ∑l(t),t从1到T,T表示整个事件序列最大长度。最终目标是用梯度下降法让L(t)最小化,找到一个最优权重w使得L(t)最小,当w发生微小变化L(t)不再变化,达到局部最优,即L对w偏导梯度为0。
dL/dw表示当w发生单位变化L变化多少,dh(t)/dw表示当w发生单位变化h(t)变化多少,dL/dh(t)表示当h(t)发生单位变化时L变化多少,(dL/dh(t)) * (dh(t)/dw)表示第t时序第i个记忆单元w发生单位变化L变化多少,把所有由1到M的i和所有由1到T的t累加是整体dL/dw。
第i个记忆单元,h(t)发生单位变化,整个从1到T时序所有局部损失l的累加和,是dL/dh(t),h(t)只影响从t到T时序局部损失l。
假设L(t)表示从t到T损失和,L(t) = ∑l(s)。
h(t)对w导数。
L(t) = l(t) + L(t+1),dL(t)/dh(t) = dl(t)/dh(t) + dL(t+1)/dh(t),用下一时序导数得出当前时序导数,规律推导,计算T时刻导数往前推,在T时刻,dL(T)/dh(T) = dl(T)/dh(T)。
    class LstmNetwork():
        def __init__(self, lstm_param):
            self.lstm_param = lstm_param
            self.lstm_node_list = []
            # input sequence
            self.x_list = []
    
        def y_list_is(self, y_list, loss_layer):
            """
            Updates diffs by setting target sequence
            with corresponding loss layer.
            Will *NOT* update parameters.  To update parameters,
            call self.lstm_param.apply_diff()
            """
            assert len(y_list) == len(self.x_list)
            idx = len(self.x_list) - 1
            # first node only gets diffs from label ...
            loss = loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx])
            diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx])
            # here s is not affecting loss due to h(t+1), hence we set equal to zero
            diff_s = np.zeros(self.lstm_param.mem_cell_ct)
            self.lstm_node_list[idx].top_diff_is(diff_h, diff_s)
            idx -= 1
    
            ### ... following nodes also get diffs from next nodes, hence we add diffs to diff_h
            ### we also propagate error along constant error carousel using diff_s
            while idx >= 0:
                loss += loss_layer.loss(self.lstm_node_list[idx].state.h, y_list[idx])
                diff_h = loss_layer.bottom_diff(self.lstm_node_list[idx].state.h, y_list[idx])
                diff_h += self.lstm_node_list[idx + 1].state.bottom_diff_h
                diff_s = self.lstm_node_list[idx + 1].state.bottom_diff_s
                self.lstm_node_list[idx].top_diff_is(diff_h, diff_s)
                idx -= 1
    
            return loss
diff_h(预测结果误差发生单位变化损失L多少,dL(t)/dh(t)数值计算),由idx从T往前遍历到1,计算loss_layer.bottom_diff和下一个时序bottom_diff_h和作为diff_h(第一次遍历即T不加bottom_diff_h)。
loss_layer.bottom_diff:
        def bottom_diff(self, pred, label):
            diff = np.zeros_like(pred)
            diff[0] = 2 * (pred[0] - label)
            return diff
l(t) = f(h(t), y(t)) = ||h(t) - y(t)||^2导数l‘(t) = 2 * (h(t) - y(t))
。当s(t)发生变化,L(t)变化来源s(t)影响h(t)和h(t+1),影响L(t)。
h(t+1)不会影响l(t)。
左边式子(dL(t)/dh(t)) * (dh(t)/ds(t)),由t+1到t来逐级反推dL(t)/ds(t)。
神经元self.state.h = self.state.s * self.state.o,h(t) = s(t) * o(t),dh(t)/ds(t) = o(t),dL(t)/dh(t)是top_diff_h。
top_diff_is,Bottom means input to the layer, top means output of the layer. Caffe also uses this terminology. bottom表示神经网络层输入,top表示神经网络层输出,和caffe概念一致。
def top_diff_is(self, top_diff_h, top_diff_s):
top_diff_h表示当前t时序dL(t)/dh(t), top_diff_s表示t+1时序记忆单元dL(t)/ds(t)。
            ds = self.state.o * top_diff_h + top_diff_s
            do = self.state.s * top_diff_h
            di = self.state.g * ds
            dg = self.state.i * ds
            df = self.s_prev * ds
前缀d表达误差L对某一项导数(directive)。
ds是在根据公式dL(t)/ds(t)计算当前t时序dL(t)/ds(t)。
do是计算dL(t)/do(t),h(t) = s(t) * o(t),dh(t)/do(t) = s(t),dL(t)/do(t) = (dL(t)/dh(t)) * (dh(t)/do(t)) = top_diff_h * s(t)。
di是计算dL(t)/di(t)。s(t) = f(t) * s(t-1) + i(t) * g(t)。dL(t)/di(t) = (dL(t)/ds(t)) * (ds(t)/di(t)) = ds * g(t)。
dg是计算dL(t)/dg(t),dL(t)/dg(t) = (dL(t)/ds(t)) * (ds(t)/dg(t)) = ds * i(t)。
df是计算dL(t)/df(t),dL(t)/df(t) = (dL(t)/ds(t)) * (ds(t)/df(t)) = ds * s(t-1)。
            di_input = (1. - self.state.i) * self.state.i * di
            df_input = (1. - self.state.f) * self.state.f * df
            do_input = (1. - self.state.o) * self.state.o * do
            dg_input = (1. - self.state.g ** 2) * dg
sigmoid函数导数,tanh函数导数。di_input,(1. - self.state.i) * self.state.i,sigmoid导数,当i神经元输入发生单位变化时输出值有多大变化,再乘di表示当i神经元输入发生单位变化时误差L(t)发生多大变化,dL(t)/d i_input(t)。
            self.param.wi_diff += np.outer(di_input, self.xc)
            self.param.wf_diff += np.outer(df_input, self.xc)
            self.param.wo_diff += np.outer(do_input, self.xc)
            self.param.wg_diff += np.outer(dg_input, self.xc)
            self.param.bi_diff += di_input
            self.param.bf_diff += df_input
            self.param.bo_diff += do_input
            self.param.bg_diff += dg_input
w*_diff是权重矩阵误差,b*_diff是偏置误差,用于更新。
            dxc = np.zeros_like(self.xc)
            dxc += np.dot(self.param.wi.T, di_input)
            dxc += np.dot(self.param.wf.T, df_input)
            dxc += np.dot(self.param.wo.T, do_input)
            dxc += np.dot(self.param.wg.T, dg_input)
累加输入xdiff,x在四处起作用,四处diff加和后作xdiff。
            self.state.bottom_diff_s = ds * self.state.f
            self.state.bottom_diff_x = dxc[:self.param.x_dim]
            self.state.bottom_diff_h = dxc[self.param.x_dim:]
bottom_diff_s是在t-1时序上s变化和t时序上s变化时f倍关系。dxc是x和h横向合并矩阵,分别取两部分diff信息bottom_diff_x和bottom_diff_h。    
    def x_list_clear(self):
            self.x_list = []
    
        def x_list_add(self, x):
            self.x_list.append(x)
            if len(self.x_list) > len(self.lstm_node_list):
                # need to add new lstm node, create new state mem
                lstm_state = LstmState(self.lstm_param.mem_cell_ct, self.lstm_param.x_dim)
                self.lstm_node_list.append(LstmNode(self.lstm_param, lstm_state))
    
            # get index of most recent x input
            idx = len(self.x_list) - 1
            if idx == 0:
                # no recurrent inputs yet
                self.lstm_node_list[idx].bottom_data_is(x)
            else:
                s_prev = self.lstm_node_list[idx - 1].state.s
                h_prev = self.lstm_node_list[idx - 1].state.h
                self.lstm_node_list[idx].bottom_data_is(x, s_prev, h_prev)
添加训练样本,输入x数据。
    def example_0():
        # learns to repeat simple sequence from random inputs
        np.random.seed(0)
    
        # parameters for input data dimension and lstm cell count
        mem_cell_ct = 100
        x_dim = 50
        concat_len = x_dim + mem_cell_ct
        lstm_param = LstmParam(mem_cell_ct, x_dim)
        lstm_net = LstmNetwork(lstm_param)
        y_list = [-0.5,0.2,0.1, -0.5]
        input_val_arr = [np.random.random(x_dim) for _ in y_list]
    
        for cur_iter in range(100):
            print "cur iter: ", cur_iter
            for ind in range(len(y_list)):
                lstm_net.x_list_add(input_val_arr[ind])
                print "y_pred[%d] : %f" % (ind, lstm_net.lstm_node_list[ind].state.h[0])
    
            loss = lstm_net.y_list_is(y_list, ToyLossLayer)
            print "loss: ", loss
            lstm_param.apply_diff(lr=0.1)
            lstm_net.x_list_clear()
初始化LstmParam,指定记忆存储单元数为100,指定输入样本x维度是50。初始化LstmNetwork训练模型,生成4组各50个随机数,分别以[-0.5,0.2,0.1, -0.5]作为y值训练,每次喂50个随机数和一个y值,迭代100次。
lstm输入一串连续质数预估下一个质数。小测试,生成100以内质数,循环拿出50个质数序列作x,第51个质数作y,拿出10个样本参与训练1w次,均方误差由0.17973最终达到了1.05172e-06,几乎完全正确:
    import numpy as np
    import sys
    
    from lstm import LstmParam, LstmNetwork
    
    class ToyLossLayer:
        """
        Computes square loss with first element of hidden layer array.
        """
        @classmethod
        def loss(self, pred, label):
            return (pred[0] - label) ** 2
    
        @classmethod
        def bottom_diff(self, pred, label):
            diff = np.zeros_like(pred)
            diff[0] = 2 * (pred[0] - label)
            return diff
    
    class Primes:
        def __init__(self):
            self.primes = list()
            for i in range(2, 100):
                is_prime = True
                for j in range(2, i-1):
                    if i % j == 0:
                        is_prime = False
                if is_prime:
                    self.primes.append(i)
            self.primes_count = len(self.primes)
        def get_sample(self, x_dim, y_dim, index):
            result = np.zeros((x_dim+y_dim))
            for i in range(index, index + x_dim + y_dim):
                result[i-index] = self.primes[i%self.primes_count]/100.0
            return result
    
    def example_0():
        mem_cell_ct = 100
        x_dim = 50
        concat_len = x_dim + mem_cell_ct
        lstm_param = LstmParam(mem_cell_ct, x_dim)
        lstm_net = LstmNetwork(lstm_param)
    
        primes = Primes()
        x_list = []
        y_list = []
        for i in range(0, 10):
            sample = primes.get_sample(x_dim, 1, i)
            x = sample[0:x_dim]
            y = sample[x_dim:x_dim+1].tolist()[0]
            x_list.append(x)
            y_list.append(y)
    
        for cur_iter in range(10000):
            if cur_iter % 1000 == 0:
                print "y_list=", y_list
            for ind in range(len(y_list)):
                lstm_net.x_list_add(x_list[ind])
                if cur_iter % 1000 == 0:
                    print "y_pred[%d] : %f" % (ind, lstm_net.lstm_node_list[ind].state.h[0])
    
            loss = lstm_net.y_list_is(y_list, ToyLossLayer)
            if cur_iter % 1000 == 0:
                print "loss: ", loss
            lstm_param.apply_diff(lr=0.01)
            lstm_net.x_list_clear()
    
    if __name__ == "__main__":
        example_0()
质数列表全都除以100,这个代码训练数据必须是小于1数值。
torch是深度学习框架。1)tensorflow,谷歌主推,时下最火,小型试验和大型计算都可以,基于python,缺点是上手相对较难,速度一般;2)torch,facebook主推,用于小型试验,开源应用较多,基于lua,上手较快,网上文档较全,缺点是lua语言相对冷门;3)mxnet,Amazon主推,主要用于大型计算,基于python和R,缺点是网上开源项目较少;4)caffe,facebook主推,用于大型计算,基于c++、python,缺点是开发不是很方便;5)theano,速度一般,基于python,评价很好。
 
torch github上lstm实现项目比较多。
 
在mac上安装torch。https://github.com/torch/torch7/wiki/Cheatsheet#installing-and-running-torch 。
    git clone https://github.com/torch/distro.git ~/torch --recursive
    cd ~/torch; bash install-deps;
    ./install.sh
qt安装不成功问题,自己单独安装。
    brew install cartr/qt4/qt
安装后需要手工加到~/.bash_profile中。
    . ~/torch/install/bin/torch-activate
source ~/.bash_profile后执行th使用torch。
安装itorch,安装依赖
    brew install zeromq
    brew install openssl
    luarocks install luacrypto OPENSSL_DIR=/usr/local/opt/openssl/
    
    git clone https://github.com/facebook/iTorch.git
    cd iTorch
    luarocks make 
 
用卷积神经网络实现图像识别。
创建pattern_recognition.lua:
    require ‘nn‘
    require ‘paths‘
    if (not paths.filep("cifar10torchsmall.zip")) then
        os.execute(‘wget -c https://s3.amazonaws.com/torch7/data/cifar10torchsmall.zip‘)
        os.execute(‘unzip cifar10torchsmall.zip‘)
    end
    trainset = torch.load(‘cifar10-train.t7‘)
    testset = torch.load(‘cifar10-test.t7‘)
    classes = {‘airplane‘, ‘automobile‘, ‘bird‘, ‘cat‘,
    ‘deer‘, ‘dog‘, ‘frog‘, ‘horse‘, ‘ship‘, ‘truck‘}
    setmetatable(trainset,
    {__index = function(t, i)
        return {t.data[i], t.label[i]}
    end}
    );
    trainset.data = trainset.data:double() -- convert the data from a ByteTensor to a DoubleTensor.
    
    function trainset:size()
        return self.data:size(1)
    end
    mean = {} -- store the mean, to normalize the test set in the future
    stdv  = {} -- store the standard-deviation for the future
    for i=1,3 do -- over each image channel
        mean[i] = trainset.data[{ {}, {i}, {}, {}  }]:mean() -- mean estimation
        print(‘Channel ‘ .. i .. ‘, Mean: ‘ .. mean[i])
        trainset.data[{ {}, {i}, {}, {}  }]:add(-mean[i]) -- mean subtraction
    
        stdv[i] = trainset.data[{ {}, {i}, {}, {}  }]:std() -- std estimation
        print(‘Channel ‘ .. i .. ‘, Standard Deviation: ‘ .. stdv[i])
        trainset.data[{ {}, {i}, {}, {}  }]:div(stdv[i]) -- std scaling
    end
    net = nn.Sequential()
    net:add(nn.SpatialConvolution(3, 6, 5, 5)) -- 3 input image channels, 6 output channels, 5x5 convolution kernel
    net:add(nn.ReLU())                       -- non-linearity
    net:add(nn.SpatialMaxPooling(2,2,2,2))     -- A max-pooling operation that looks at 2x2 windows and finds the max.
    net:add(nn.SpatialConvolution(6, 16, 5, 5))
    net:add(nn.ReLU())                       -- non-linearity
    net:add(nn.SpatialMaxPooling(2,2,2,2))
    net:add(nn.View(16*5*5))                    -- reshapes from a 3D tensor of 16x5x5 into 1D tensor of 16*5*5
    net:add(nn.Linear(16*5*5, 120))             -- fully connected layer (matrix multiplication between input and weights)
    net:add(nn.ReLU())                       -- non-linearity
    net:add(nn.Linear(120, 84))
    net:add(nn.ReLU())                       -- non-linearity
    net:add(nn.Linear(84, 10))                   -- 10 is the number of outputs of the network (in this case, 10 digits)
    net:add(nn.LogSoftMax())                     -- converts the output to a log-probability. Useful for classification problems
    criterion = nn.ClassNLLCriterion()
    trainer = nn.StochasticGradient(net, criterion)
    trainer.learningRate = 0.001
    trainer.maxIteration = 5
    trainer:train(trainset)
    testset.data = testset.data:double()   -- convert from Byte tensor to Double tensor
    for i=1,3 do -- over each image channel
        testset.data[{ {}, {i}, {}, {}  }]:add(-mean[i]) -- mean subtraction
        testset.data[{ {}, {i}, {}, {}  }]:div(stdv[i]) -- std scaling
    end
    predicted = net:forward(testset.data[100])
    print(classes[testset.label[100]])
    print(predicted:exp())
    for i=1,predicted:size(1) do
        print(classes[i], predicted[i])
    end
    correct = 0
    for i=1,10000 do
        local groundtruth = testset.label[i]
        local prediction = net:forward(testset.data[i])
        local confidences, indices = torch.sort(prediction, true)  -- true means sort in descending order
        if groundtruth == indices[1] then
            correct = correct + 1
        end
    end
    
    print(correct, 100*correct/10000 .. ‘ % ‘)
    class_performance = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
    for i=1,10000 do
        local groundtruth = testset.label[i]
        local prediction = net:forward(testset.data[i])
        local confidences, indices = torch.sort(prediction, true)  -- true means sort in descending order
        if groundtruth == indices[1] then
            class_performance[groundtruth] = class_performance[groundtruth] + 1
        end
    end
    
    for i=1,#classes do
        print(classes[i], 100*class_performance[i]/1000 .. ‘ %‘)
    end
 
执行th pattern_recognition.lua。
首先下载cifar10torchsmall.zip样本,有50000张训练用图片,10000张测试用图片,分别都标注,包括airplane、automobile等10种分类,对trainset绑定__index和size方法,兼容nn.Sequential使用,绑定函数看lua教程:http://tylerneylon.com/a/learn-lua/ ,trainset数据正规化,数据转成均值为1方差为1的double类型张量。初始化卷积神经网络模型,包括两层卷积、两层池化、一个全连接以及一个softmax层,进行训练,学习率为0.001,迭代5次,模型训练好后对测试机第100号图片做预测,打印出整体正确率以及每种分类准确率。https://github.com/soumith/cvpr2015/blob/master/Deep%20Learning%20with%20Torch.ipynb 。
 
torch可以方便支持gpu计算,需要对代码做修改。
比较流行的seq2seq基本都用lstm组成编码器解码器模型实现,开源实现大都基于one-hot embedding(没有词向量表达信息量大)。word2vec词向量 seq2seq模型,只有一个lstm单元机器人。
下载《甄环传》小说原文。上网随便百度“甄环传 txt”,下载下来,把文件转码成utf-8编码,把windows回车符都替换成n,以便后续处理。
 
对甄环传切词。切词工具word_segment.py到github下载,地址在https://github.com/warmheartli/ChatBotCourse/blob/master/word_segment.py 。
    python ./word_segment.py zhenhuanzhuan.txt zhenhuanzhuan.segment
 
生成词向量。用word2vec,word2vec源码 https://github.com/warmheartli/ChatBotCourse/tree/master/word2vec 。make编译即可执行。
./word2vec -train ./zhenhuanzhuan.segment -output vectors.bin -cbow 1 -size 200 -window 8 -negative 25 -hs 0 -sample 1e-4 -threads 20 -binary 1 -iter 15
生成一个vectors.bin文件,基于甄环传原文生成的词向量文件。
 
训练代码。
    # -*- coding: utf-8 -*-
    
    import sys
    import math
    import tflearn
    import chardet
    import numpy as np
    import struct
    
    seq = []
    
    max_w = 50
    float_size = 4
    word_vector_dict = {}
    
    def load_vectors(input):
        """从vectors.bin加载词向量,返回一个word_vector_dict的词典,key是词,value是200维的向量
        """
        print "begin load vectors"
    
        input_file = open(input, "rb")
    
        # 获取词表数目及向量维度
        words_and_size = input_file.readline()
        words_and_size = words_and_size.strip()
        words = long(words_and_size.split(‘ ‘)[0])
        size = long(words_and_size.split(‘ ‘)[1])
        print "words =", words
        print "size =", size
    
        for b in range(0, words):
            a = 0
            word = ‘‘
            # 读取一个词
            while True:
                c = input_file.read(1)
                word = word + c
                if False == c or c == ‘ ‘:
                    break
                if a < max_w and c != ‘n‘:
                    a = a + 1
            word = word.strip()
    
            vector = []
            for index in range(0, size):
                m = input_file.read(float_size)
                (weight,) = struct.unpack(‘f‘, m)
                vector.append(weight)
    
            # 将词及其对应的向量存到dict中
            word_vector_dict[word.decode(‘utf-8‘)] = vector
    
        input_file.close()
        print "load vectors finish"
    
    def init_seq():
        """读取切好词的文本文件,加载全部词序列
        """
        file_object = open(‘zhenhuanzhuan.segment‘, ‘r‘)
        vocab_dict = {}
        while True:
            line = file_object.readline()
            if line:
                for word in line.decode(‘utf-8‘).split(‘ ‘):
                    if word_vector_dict.has_key(word):
                        seq.append(word_vector_dict[word])
            else:
                break
        file_object.close()
    
    def vector_sqrtlen(vector):
        len = 0
        for item in vector:
            len += item * item
        len = math.sqrt(len)
        return len
    
    def vector_cosine(v1, v2):
        if len(v1) != len(v2):
            sys.exit(1)
        sqrtlen1 = vector_sqrtlen(v1)
        sqrtlen2 = vector_sqrtlen(v2)
        value = 0
        for item1, item2 in zip(v1, v2):
            value += item1 * item2
        return value / (sqrtlen1*sqrtlen2)
    
    def vector2word(vector):
        max_cos = -10000
        match_word = ‘‘
        for word in word_vector_dict:
            v = word_vector_dict[word]
            cosine = vector_cosine(vector, v)
            if cosine > max_cos:
                max_cos = cosine
                match_word = word
        return (match_word, max_cos)
    
    def main():
        load_vectors("./vectors.bin")
        init_seq()
        xlist = []
        ylist = []
        test_X = None
        #for i in range(len(seq)-100):
        for i in range(10):
            sequence = seq[i:i+20]
            xlist.append(sequence)
            ylist.append(seq[i+20])
            if test_X is None:
                test_X = np.array(sequence)
                (match_word, max_cos) = vector2word(seq[i+20])
                print "right answer=", match_word, max_cos
    
        X = np.array(xlist)
        Y = np.array(ylist)
        net = tflearn.input_data([None, 20, 200])
        net = tflearn.lstm(net, 200)
        net = tflearn.fully_connected(net, 200, activation=‘linear‘)
        net = tflearn.regression(net, optimizer=‘sgd‘, learning_rate=0.1,
                                         loss=‘mean_square‘)
        model = tflearn.DNN(net)
        model.fit(X, Y, n_epoch=500, batch_size=10,snapshot_epoch=False,show_metric=True)
        model.save("model")
        predict = model.predict([test_X])
        #print predict
        #for v in test_X:
        #    print vector2word(v)
        (match_word, max_cos) = vector2word(predict[0])
        print "predict=", match_word, max_cos
    
    main()
     
load_vectors从vectors.bin加载词向量,init_seq加载甄环传切词文本并存到一个序列里,vector2word求距离某向量最近词,模型只有一个lstm单元。
经过500个epoch训练,均方损失降到0.33673,以0.941794432002余弦相似度预测出下一个字。
强大gpu,调整参数,整篇文章都训练,修改代码predict部分,不断输出下一个字,自动吐出甄环体。基于tflearn实现,tflearn官方文档examples实现seq2seq直接调用tensorflow中的tensorflow/python/ops/seq2seq.py,基于one-hot embedding方法,一定没有词向量效果好。
参考资料:
《Python 自然语言处理》
http://www.shareditor.com/blogshow?blogId=116
http://www.shareditor.com/blogshow?blogId=117
http://www.shareditor.com/blogshow?blogId=118
欢迎推荐上海机器学习工作机会,我的微信:qingxingfengzi
学习笔记CB012: LSTM 简单实现、完整实现、torch、小说训练word2vec lstm机器人
标签:return LLC init 测试 之间 axis not 自己 table
原文地址:https://www.cnblogs.com/libinggen/p/8976186.html