码迷,mamicode.com
首页 > 其他好文 > 详细

【spark】常用转换操作:keys 、values和mapValues

时间:2018-05-07 11:50:56      阅读:5662      评论:0      收藏:0      [点我收藏+]

标签:oop   func   str   fun   变化   strong   返回   hadoop   java   

1.keys

功能:

  返回所有键值对的key

示例

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map(x => (x,1))
pairRdd.keys.collect.foreach(println)

结果

hadoop
spark
hive
spark
list: List[String] = List(hadoop, spark, hive, spark)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[142] at parallelize at command-3434610298353610:2
pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[143] at map at command-3434610298353610:3

2.values

功能:

  返回所有键值对的value

示例

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map(x => (x,1))
pairRdd.values.collect.foreach(println)

结果

1
1
1
1
list: List[String] = List(hadoop, spark, hive, spark)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[145] at parallelize at command-3434610298353610:2
pairRdd: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[146] at map at command-3434610298353610:3

3.mapValues(func)

功能:

  对键值对每个value都应用一个函数,但是,key不会发生变化。

示例 

val list = List("hadoop","spark","hive","spark")
val rdd = sc.parallelize(list)
val pairRdd = rdd.map(x => (x,1))
pairRdd.mapValues(_+1).collect.foreach(println)//对每个value进行+1

结果

(hadoop,2)
(spark,2)
(hive,2)
(spark,2)

 

【spark】常用转换操作:keys 、values和mapValues

标签:oop   func   str   fun   变化   strong   返回   hadoop   java   

原文地址:https://www.cnblogs.com/zzhangyuhang/p/9001608.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!