标签:oid char highlight radius 结果 \n printf 取模运算 数列
如题,已知一个数列,你需要进行下面三种操作:
1.将某区间每一个数乘上x
2.将某区间每一个数加上x
3.求出某区间每一个数的和
输入格式:
第一行包含三个整数N、M、P,分别表示该数列数字的个数、操作的总个数和模数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k
操作2: 格式:2 x y k 含义:将区间[x,y]内每个数加上k
操作3: 格式:3 x y 含义:输出区间[x,y]内每个数的和对P取模所得的结果
输出格式:
输出包含若干行整数,即为所有操作3的结果。
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=1000,M<=10000
对于100%的数据:N<=100000,M<=100000
(数据已经过加强^_^)
样例说明:

这个题真是毒瘤,疯狂卡你的时间,int,取余运算不可太多,否者时间回很多,甚至会超时,如果一开始你有30分,请看是否使用 long long,还有就是取模运算是否足够,还有就是乘法的lazyc标记在不等于-1是进行运算可能有负数。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL MAXN=1e6+10;
LL a[MAXN],mod;
struct node{
LL l,r;
long long sum;
long long lazy;
long long lazyc;
}Tree[MAXN<<2];
inline LL ls(LL p){ return p<<1;}//左儿子
inline LL rs(LL p){ return p<<1|1;}
void PushUP(LL p)//向上更新
{
Tree[p].sum=(Tree[ls(p)].sum+Tree[rs(p)].sum)%mod;
Tree[p].sum%=mod;
}
void build(LL p,LL l,LL r)
{
Tree[p].lazy=0;
Tree[p].lazyc=1;
Tree[p].l=l;Tree[p].r=r;
if(l==r) {Tree[p].sum=a[l];return;}
LL mid=(l+r)>>1;
build(ls(p),l,mid);
build(rs(p),mid+1,r);
PushUP(p);
}
void PushDown(LL p,LL l,LL r)//lazy节点下移
{
if(Tree[p].lazy)
{
LL len=(r-l+1);
Tree[ls(p)].lazy=(Tree[ls(p)].lazy%mod+Tree[p].lazy%mod)%mod;
Tree[rs(p)].lazy=(Tree[rs(p)].lazy%mod+Tree[p].lazy%mod)%mod;
Tree[ls(p)].sum=(Tree[ls(p)].sum%mod+Tree[p].lazy%mod*(len-(len>>1)))%mod;
Tree[rs(p)].sum=(Tree[rs(p)].sum%mod+Tree[p].lazy%mod*(len>>1))%mod;
Tree[p].lazy=0;//下移后,原节点取消标记
}
}
void PushDownc(LL p,LL l,LL r)
{
if(Tree[p].lazyc!=1)//数据中有可能有负数,
{
Tree[ls(p)].lazyc=(Tree[ls(p)].lazyc%mod*Tree[p].lazyc%mod)%mod;
Tree[rs(p)].lazyc=(Tree[rs(p)].lazyc%mod*Tree[p].lazyc%mod)%mod;
Tree[ls(p)].lazy=(Tree[ls(p)].lazy%mod*Tree[p].lazyc%mod)%mod;
Tree[rs(p)].lazy=(Tree[rs(p)].lazy%mod*Tree[p].lazyc%mod)%mod;
Tree[ls(p)].sum=(Tree[ls(p)].sum%mod*Tree[p].lazyc%mod)%mod;
Tree[rs(p)].sum=(Tree[rs(p)].sum%mod*Tree[p].lazyc%mod)%mod;
Tree[p].lazyc=1;
}
PushDown(p,l,r);
}
void UpDate(LL L,LL R,LL c,LL l,LL r,LL p)//更新操作
{
if(l>=L&&r<=R)//这个区间完全在更新区间的内部
{
Tree[p].lazy=(Tree[p].lazy%mod+c)%mod;
Tree[p].sum=(Tree[p].sum%mod+c*(r-l+1))%mod;
return;
}
PushDownc(p,l,r);//加法的更新操作也应当使得乘法的lazyc标记向下移动
LL mid=(l+r)>>1;
if(mid>=L) UpDate(L,R,c,l,mid,ls(p));
if(mid<R) UpDate(L,R,c,mid+1,r,rs(p));
PushUP(p);
}
void Updatec(LL L,LL R,LL c,LL l,LL r,LL p)
{
if(l>=L&&r<=R)//这个区间完全在更新区间的内部
{
Tree[p].lazyc=(Tree[p].lazyc%mod*c)%mod;
Tree[p].lazy=(Tree[p].lazy%mod*c)%mod;
Tree[p].sum=(Tree[p].sum%mod*c)%mod;
return;
}
PushDownc(p,l,r);
LL mid=(l+r)>>1;
if(mid>=L) Updatec(L,R,c,l,mid,ls(p));
if(mid<R) Updatec(L,R,c,mid+1,r,rs(p));
PushUP(p);
}
LL query(LL L,LL R,LL l,LL r,LL p)
{
LL res=0;
if(l>=L&&r<=R) return Tree[p].sum%mod;
LL mid=(l+r)>>1;
PushDownc(p,l,r);
if(mid>=L) res+=(query(L,R,l,mid,ls(p))%mod);
if(mid<R) res+=(query(L,R,mid+1,r,rs(p))%mod);
return res%mod;
}
int main()
{
LL n,m;
scanf("%lld%lld%lld",&n,&m,&mod);
for (LL i = 1; i <=n ; ++i) {
scanf("%lld",&a[i]);
}
build(1,1,n);
while (m--)
{
LL flag;
scanf("%lld",&flag);
if(flag==1)
{
LL x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
Updatec(x,y,z%mod,1,n,1);
}
else if(flag==2)
{
LL x,y,z;
scanf("%lld%lld%lld",&x,&y,&z);
UpDate(x,y,z,1,n,1);
}
else if(flag==3)
{
LL x,y;
scanf("%lld%lld",&x,&y);
printf("%lld\n",query(x,y,1,n,1)%mod);
}
}
return 0;
}
其实是一样的题,但是直接上面那个代码有两个点过不去,因此加了一个输入挂,然后就没什么问题了。
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const LL MAXN=1e6+10;
LL a[MAXN],mod;
struct node{
LL l,r;
long long sum;
long long lazy;
long long lazyc;
}Tree[MAXN<<2];
inline LL ls(LL p){ return p<<1;}//左儿子
inline LL rs(LL p){ return p<<1|1;}
void PushUP(LL p)//向上更新
{
Tree[p].sum=(Tree[ls(p)].sum+Tree[rs(p)].sum)%mod;
Tree[p].sum%=mod;
}
void build(LL p,LL l,LL r)
{
Tree[p].lazy=0;
Tree[p].lazyc=1;
Tree[p].l=l;Tree[p].r=r;
if(l==r) {Tree[p].sum=a[l];return;}
LL mid=(l+r)>>1;
build(ls(p),l,mid);
build(rs(p),mid+1,r);
PushUP(p);
}
void PushDown(LL p,LL l,LL r)//lazy节点下移
{
if(Tree[p].lazy)
{
LL len=(r-l+1);
Tree[ls(p)].lazy=(Tree[ls(p)].lazy%mod+Tree[p].lazy%mod)%mod;
Tree[rs(p)].lazy=(Tree[rs(p)].lazy%mod+Tree[p].lazy%mod)%mod;
Tree[ls(p)].sum=(Tree[ls(p)].sum%mod+Tree[p].lazy%mod*(len-(len>>1)))%mod;
Tree[rs(p)].sum=(Tree[rs(p)].sum%mod+Tree[p].lazy%mod*(len>>1))%mod;
Tree[p].lazy=0;//下移后,原节点取消标记
}
}
void PushDownc(LL p,LL l,LL r)
{
if(Tree[p].lazyc!=1)//数据中有可能有负数,
{
Tree[ls(p)].lazyc=(Tree[ls(p)].lazyc%mod*Tree[p].lazyc%mod)%mod;
Tree[rs(p)].lazyc=(Tree[rs(p)].lazyc%mod*Tree[p].lazyc%mod)%mod;
Tree[ls(p)].lazy=(Tree[ls(p)].lazy%mod*Tree[p].lazyc%mod)%mod;
Tree[rs(p)].lazy=(Tree[rs(p)].lazy%mod*Tree[p].lazyc%mod)%mod;
Tree[ls(p)].sum=(Tree[ls(p)].sum%mod*Tree[p].lazyc%mod)%mod;
Tree[rs(p)].sum=(Tree[rs(p)].sum%mod*Tree[p].lazyc%mod)%mod;
Tree[p].lazyc=1;
}
PushDown(p,l,r);
}
void UpDate(LL L,LL R,LL c,LL l,LL r,LL p)//更新操作
{
if(l>=L&&r<=R)//这个区间完全在更新区间的内部
{
Tree[p].lazy=(Tree[p].lazy%mod+c)%mod;
Tree[p].sum=(Tree[p].sum%mod+c*(r-l+1))%mod;
return;
}
PushDownc(p,l,r);//加法的更新操作也应当使得乘法的lazyc标记向下移动
LL mid=(l+r)>>1;
if(mid>=L) UpDate(L,R,c,l,mid,ls(p));
if(mid<R) UpDate(L,R,c,mid+1,r,rs(p));
PushUP(p);
}
void Updatec(LL L,LL R,LL c,LL l,LL r,LL p)
{
if(l>=L&&r<=R)//这个区间完全在更新区间的内部
{
Tree[p].lazyc=(Tree[p].lazyc%mod*c)%mod;
Tree[p].lazy=(Tree[p].lazy%mod*c)%mod;
Tree[p].sum=(Tree[p].sum%mod*c)%mod;
return;
}
PushDownc(p,l,r);
LL mid=(l+r)>>1;
if(mid>=L) Updatec(L,R,c,l,mid,ls(p));
if(mid<R) Updatec(L,R,c,mid+1,r,rs(p));
PushUP(p);
}
LL query(LL L,LL R,LL l,LL r,LL p)
{
LL res=0;
if(l>=L&&r<=R) return Tree[p].sum%mod;
LL mid=(l+r)>>1;
PushDownc(p,l,r);
if(mid>=L) res+=(query(L,R,l,mid,ls(p))%mod);
if(mid<R) res+=(query(L,R,mid+1,r,rs(p))%mod);
return res%mod;
}
long long read()
{
char ch=‘ ‘;
LL ans=0;
while(ch<‘0‘ || ch>‘9‘)
ch=getchar();
while(ch<=‘9‘ && ch>=‘0‘)
{
ans=ans*10+ch-‘0‘;
ch=getchar();
}
return ans;
}
int main()
{
LL n,m;
scanf("%lld%lld",&n,&mod);
for (LL i = 1; i <=n ; ++i) {
// scanf("%lld",&a[i]);
a[i]=read();
}
build(1,1,n);
scanf("%lld",&m);
while (m--)
{
LL flag;
scanf("%lld",&flag);
if(flag==1)
{
LL x,y,z;
//scanf("%lld%lld%lld",&x,&y,&z);
x=read();y=read();z=read();
Updatec(x,y,z%mod,1,n,1);
}
else if(flag==2)
{
LL x,y,z;
//scanf("%lld%lld%lld",&x,&y,&z);
x=read();y=read();z=read();
UpDate(x,y,z,1,n,1);
}
else if(flag==3)
{
LL x,y;
//scanf("%lld%lld",&x,&y);
x=read();y=read();
printf("%lld\n",query(x,y,1,n,1)%mod);
}
}
return 0;
}
标签:oid char highlight radius 结果 \n printf 取模运算 数列
原文地址:https://www.cnblogs.com/-xiangyang/p/9436539.html