标签:leetcode
第一种方法是DFS,将所有可能的前缀找到,递归调用partition(剩余字符串)
复杂度为O(2^n)
代码如下:
vector<vector<string>> partition(string s) {
vector<vector<string>> res;
vector<string> patition;
if (s.size() == 0) return res;
partition(s, patition, res);
return res;
}
void partition(string s, vector<string>& patition, vector<vector<string>>& res) {
for (int i = 1; i < s.size(); i++)
{
if (isPalindrome(s.substr(0, i)))
{
patition.push_back(s.substr(0, i));
partition(s.substr(i), patition, res);
patition.pop_back();
}
}
if (isPalindrome(s))
{
patition.push_back(s);
res.push_back(patition);
patition.pop_back();
}
}
bool isPalindrome(string s)
{
int l = 0, r = s.size() - 1;
while (l <= r)
{
if (s[l] != s[r]) return false;
l++;
r--;
}
return true;
}来自 https://oj.leetcode.com/discuss/9623/my-java-dp-only-solution-without-recursion-o-n-2
res(i)表示s[0...i-1]的所有分解方式
isPalin(i,j)表示s[i...j]是否为回文串
isPalin(i,j) = true if i==j or (s[i] == s[j] and isPalin(i + 1, j - 1)) or (s[i] == s[j] and i + 1 == j)
res(i) = res(j) + s[j...i-1] if isPalin(j, i-1)
vector<vector<string>> partition(string s) {
int size = s.size();
vector<vector<vector<string>>> res(size + 1);
res[0].push_back(vector<string>(0));
vector<vector<bool>> isPalin(size + 1, vector<bool>(size + 1, false));
for (int i = 0; i < size; i++)
{
for (int j = 0; j <= i; j++)
{
if (i == j || s[i] == s[j] && (j + 1 == i || isPalin[j + 1][i - 1]))
{
isPalin[j][i] = true;
for (int p = 0; p < res[j].size(); p++)
{
vector<string> prefix = res[j][p];
prefix.push_back(s.substr(j, i - j + 1));
res[i + 1].push_back(prefix);
}
}
}
}
return res[size];
}Palindrome Partitioning[leetcode] DFS以及DP的解法
标签:leetcode
原文地址:http://blog.csdn.net/peerlessbloom/article/details/39941087