标签:支持 dfs amp 表示 ini 介绍 不难 倍增 最大
\(LCA\)即最近公共祖先,在我们进行树上的某些毒瘤操作的时候,常常需要知道它的值,因此就出现了许多用来求\(LCA\)的代码。
而倍增则是其中最好写,最好理解,支持的操作比较多(比树链剖分要少)的一个算法了,所以本文只介绍该算法才不是因为我不会。
思想顾名思义就是倍增了,如果你深刻理解了\(ST\)表的思想的话,这个应该并不难理解。就是首先预处理出\(fa[i][j]\)
表示\(i\)这个点跳\(2^j\)步所跳到的节点,那就能很轻易地得到\(fa[i][j]\) = \(fa[fa[i][j - 1]][j-1]\),有没有发现这个很像\(ST\)表里的预处理,没错,就是因为他们都用了倍增这一思想。在预处理完之后,查询的时候就可以拿出来用了,在查询时,还是要用到倍增的思想,否则预处理这些数组就没有用了。然后就需要注意代码细节了
void dfs(int now, int f, int d)
{
deep[now] = d; fa[now][0] = f;
for (int i = lin[now]; i; i = e[i].nex)
if (e[i].to != f)//不能回到父节点
dfs(e[i].to, now, d + 1);
}
inline void init()
{
dfs(root, -1, 0);//可以令根的父亲为-1
for (int j = 0; j <= maxlog; j++)//j最大不能超过maxlog
for (int i = 1; i <= n; i++)
if (fa[i][j] < 0) fa[i][j + 1] = -1;
else fa[i][j + 1] = fa[fa[i][j]][j];//预处理核心部分
}
int lca(int u, int v)
{
if(deep[u] > deep[v])//来让v处于深度较高的地方,方便操作
swap(u, v);
for(int k = 0; k <= maxlog; k++)
if((deep[v] - deep[u]) >> k & 1),我们用二进制来表示deep差,来快速转移到同意深度
v = fa[v][k];
if(u == v)
return u;
for(int k = maxlog; k >= 0; k--)
if(fa[v][k] != fa[u][k])
u = fa[u][k], v = fa[v][k];
return fa[u][0];
}
标签:支持 dfs amp 表示 ini 介绍 不难 倍增 最大
原文地址:https://www.cnblogs.com/liuwenyao/p/9905359.html