标签:blog io os for sp div on log amp
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
对于这样一个式子,通过矩阵与线性变换的关系,可以轻松的构造出这样的矩阵
A0:
9
8
7
6
5
4
3
2
1
0
A1:
1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
那么f(n)=A1^(n-9)*A0
快速幂即可
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <climits>
#include <iostream>
#include <string>
using namespace std;
#define MP make_pair
#define PB push_back
typedef long long LL;
typedef unsigned long long ULL;
typedef vector<int> VI;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
const int INF = INT_MAX / 3;
const double eps = 1e-8;
const LL LINF = 1e17;
const double DINF = 1e60;
const int maxn = 11;
LL k, mod;
struct Matrix {
int n, m;
LL data[maxn][maxn];
Matrix(int n = 0, int m = 0): n(n), m(m) {
memset(data, 0, sizeof(data));
}
};
Matrix operator * (Matrix a, Matrix b) {
Matrix ret(a.n, b.m);
for(int i = 1; i <= a.n; i++) {
for(int j = 1; j <= b.m; j++) {
for(int k = 1; k <= a.m; k++) {
ret.data[i][j] += a.data[i][k] * b.data[k][j];
ret.data[i][j] %= mod;
}
}
}
return ret;
}
Matrix pow(Matrix mat, LL p) {
if(p == 1) return mat;
Matrix ret = pow(mat * mat, p / 2);
if(p & 1) ret = ret * mat;
return ret;
}
int main() {
int a[10];
while(cin >> k >> mod) {
for(int i = 0; i < 10; i++) cin >> a[i];
Matrix A(10, 10), A0(10, 1);
if(k < 10) cout << k % mod << endl;
else {
for(int i = 1; i <= 10; i++) A.data[1][i] = a[i - 1];
for(int i = 2; i <= 10; i++) A.data[i][i - 1] = 1;
for(int i = 1, j = 9; i <= 10; i++, j--) A0.data[i][1] = j;
A = pow(A, k - 9);
A0 = A * A0;
cout << A0.data[1][1] << endl;
}
}
return 0;
}
HDU 1757 A Simple Math Problem 矩阵快速幂
标签:blog io os for sp div on log amp
原文地址:http://www.cnblogs.com/rolight/p/4048981.html