码迷,mamicode.com
首页 > 其他好文 > 详细

pytorch基础学习(一)

时间:2019-09-19 21:57:53      阅读:109      评论:0      收藏:0      [点我收藏+]

标签:创建   length   imagenet   行数据   style   二分   表示   成熟   download   

  在炼丹师的路上越走越远,开始入手pytorch框架的学习,越炼越熟吧。。。

1. 张量的创建和操作

  创建为初始化矩阵,并初始化

a = torch.empty(5, 3)    #创建一个5*3的未初始化矩阵
nn.init.zeros_(a)        #初始化a为0
nn.init.constant_(a, 3)  # 初始化a为3
nn.init.uniform_(a)      #初始化为uniform分布

  随机数矩阵

torch.rand(5, 3)              # 5*3 , [0, 1)的随机数
torch.rand_like(m) #创建和m的size一样的随机数矩阵 torch.rand(
3, 3) # 5*3 , mean=0, variance=1,的正态分布 torch.randint(1, 10, (3,3)) #3*3的整数矩阵(1-10之间)

  tensor类型和形状

a = torch.Tensor([1, 2, 3])   #通过列表创建Tensor
a = torch.eye(3,4) #对角矩形
a = torch.ones(3,4)
b = torch.ones_like(a) #创建和a一样size a
= torch.zeros(5, 3, dtype = torch.long) a.dtype #查看数据类型 32位浮点型:torch.Float (默认的就是这种类型, float32) 64位整型:torch.Long (int64 ) 32位整型:torch.Int (int32) 16位整型:torch.Short (int16) 64位浮点型:torch.Double (float64) a.size() h, w = torch.Size([5, 3]) #5*3维 ,h=5, w=3 a.view(3, 5) #将a进行reshape成3*5的矩阵 a.view(-1, 15) # -1表示自动计算, 即转变为1*15

  tensor和numpy(array)的相互转换

b = a.numpy()    #Tensor转numpy

c = np.ones((3,3))
d = torch.from_numpy(c)  #numpy 转tensor

 

2. 张量的操作

  索引: 支持numpy的常用索引和切片操作

  加法:和numpy类似的广播原则

索引操作
y = torch.rand(5,3)
y[1:, 2]  切片和索引
y[y>0.5] 花式索引

加法操作(和numpy一样的广播原则)
result = x+y
reslut = torch.add(x, y)
y.add_(x)  #直接对y的值进行修改, 
(以_结尾的方法会直接在原地修改变量, 如x.copy_(y), x.t_()会修改x.)

result = torch.empty(5,3)
torch.add(x, y, out=result)  #这里的result必须先定义

对于一个元素的张量,可以直接通过x.item()拿到元素值
x = torch.ones(3,4)
y = torch.sum(x)
print(y.item(0))     #得到整数12.0

  cuda Tensor: pytorch 支持Gpu操作,可以在Gpu上创建tensor,通过to()方法可以在cpu和Gpu上间转换tensor

if torch.cuda.is_available():
    device = torch.device("cuda")
    y = torch.ones_like(x, device=device)   #直接在Gpu上创建tensor
    x = x.to(device)  #从cpu上转移到gpu
    z = x+y
    print(z.to("cpu", torch.double))  #转回到cpu,并改变数据类型

 

3. 自动求导(Autograd)

  在pytorch搭建的神经网络中,Tensor 和Function为最主要的两个类,一起组成了一个无环图。 在前向传播时,Function操作tensor的值,而进行反向传播时,需要计算function的导数来更新参数tensor, pytorch为我们自动实现了求导。每一个tensor都有一个requires_grad属性,若tensor.requires_grad=True, 则无环图会记录对该tensor的所有操作,当进行backward时,pytorch就会自动计算其导数值,并保存在tensor的grad属性中。

x = torch.ones(2, 2, requires_grad=True)  #设置requires_grad=True, backward时会计算导数
y = x+2  
    属性值
        y.requirs_grad     是否autograd, 会自动继承x的requires_grad
        y.grad               导数或梯度值
        y.grad_fn           对x的操作function,grad_fn=<AddBackward0>
tensor.detach()           将tensor从计算历史(无环图)中脱离出来?
with torch.no_grad():     从计算历史(无环图)中脱离, backward时不求导  
with torch.set_grad_enabled(phase == train):  (phase == train)为True时求导

tensor.backward()    #反向传播, 计算梯度,如果tensor只包含一个数时,backward不需要参数, 否则需要指明参数

backward:

#out为标量,所以backward时不带参数
x = torch.ones(2, 2, requires_grad=True) 
y = x+2
z = y*y*3
out = z.mean()
out.backward()
print(x.grad)     #tensor([[4.5000, 4.5000],[4.5000, 4.5000]])
print(y.grad)     #None 

backward计算过程如下:

技术图片

 

 

#y不为为标量,backward时需要带参数
x = torch.ones(2, 2, requires_grad=True) 
y = 2*x+2
y.backward(torch.tensor([[1,1],[1,1]], dtype=torch.float))  #可以理解为tensor([1, 1, 1, 1]) * dy/dx
print(x.grad)    # tensor([[2.,2.],[2.,2.]])


#y不为为标量,backward时需要带参数
x = torch.ones(2, 2, requires_grad=True) 
y = 2*x+2
y.backward(torch.tensor([[1,0.1],[1,0.1]], dtype=torch.float))  #可以理解为tensor([1, 0.1, 1, 0.1]) * dy/dx
print(x.grad)    # tensor([[2.0000,0.2000],[2.0000,0.2000]])

 

4. 神经网络(Neutral Networks)

  训练神经网络的典型步骤如下:

   定义神经网络(权重参数)
    在数据集上进行迭代
    前向传播,神经网络逐层计算输入的数据
    计算loss(神经网络的计算值和正确值的距离)
    计算梯度,反向传递到神经网络中,更新神经网络的权重(weight = weight - learning_rate * gradient)

 

4.1 定义神经网络

  定义一个神经网络,需要继承torch.nn.Module, 并实现初始化方法和前向传播。下面代码为AlexNet的实现(通过三种方式定义网络结构):

技术图片
#coding:utf-8

#pytorch implementation of AlexNet

import torch.nn as nn
import torch.nn.functional as F
import torch


class AlexNet(nn.Module):

    def __init__(self):               # image size 227*227
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2,2)),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False),    # when ceil_mode is False, floor will be used to calculate the shape, else ceil  
            nn.Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False),
            nn.Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)    
        )
        
        # self.avgpool = nn.AdaptiveAvgPool2d(output_size=(6,6))       #使输出的形状变成6*6
        
        self.classifier=nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(in_features=9216, out_features=4096, bias=True),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=4096, out_features=4096, bias=True),
            nn.ReLU(inplace=True),
            nn.Linear(in_features=4096, out_features=1000, bias=True)
        )
        
    def forward(self, x):
        x = self.features(x)
        x = x.view(-1, 256*6*6)
        x = self.classifier(x)
        return x
        
        
class AlexNet1(nn.Module):
    
    def __init__(self):
        super(AlexNet1, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2)),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False),
        )
        
        self.conv2 = nn.Sequential(
            nn.Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2)),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False),
        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(inplace=True),
        )
        self.conv4 = nn.Sequential(
            nn.Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(inplace=True),
        )
        self.conv5 = nn.Sequential(
            nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)    
        )
        
        self.classifier=nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(in_features=9216, out_features=4096, bias=True),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=4096, out_features=4096, bias=True),
            nn.ReLU(inplace=True),
            nn.Linear(in_features=4096, out_features=1000, bias=True)
        )
        
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = x.view(-1, 256*6*6)
        x = self.classifier(x)
        return x

class AlexNet2(nn.Module):
    
    def __init__(self):
        super(AlexNet2, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2,2))
        self.relu1 = nn.ReLU(inplace=True)
        self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)   # when ceil_mode is False, floor will be used to calculate the shape, else ceil  
        self.conv2 = nn.Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
        self.relu2 = nn.ReLU(inplace=True)
        self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
        self.conv3 = nn.Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        self.relu3 = nn.ReLU(inplace=True)
        self.conv4 = nn.Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        self.relu4 = nn.ReLU(inplace=True)
        self.conv5 = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        self.relu5 = nn.ReLU(inplace=True)
        self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
        
        self.dropout = nn.Dropout(p=0.5)
        self.linear1 = nn.Linear(in_features=9216, out_features=4096, bias=True)
        self.relu6 = nn.ReLU(inplace=True)
        self.linear2 = nn.Linear(in_features=4096, out_features=4096, bias=True)
        self.relu7 = nn.ReLU(inplace=True)
        self.linear3 = nn.Linear(in_features=4096, out_features=1000, bias=True)
        
    def forward(self, x):
        x = self.pool1(self.relu1(self.conv1(x)))
        x = self.pool2(self.relu2(self.conv2(x)))
        x = self.relu3(self.conv3(x))
        x = self.relu4(self.conv4(x))
        x = self.pool5(self.relu5(self.conv5(x)))
        
        x = x.view(-1, 256*6*6)
        
        x = self.dropout(x)
        x = self.dropout(self.relu6(self.linear1(x)))
        x = self.relu7(self.linear2(x))
        x = self.linear3(x)
        return x

if __name__=="__main__":
    # net = AlexNet()
    # net = AlexNet1()
    net = AlexNet2()
    input = torch.randn(1,3,227,227)  #torch中net输入为四维的: batch_size*channel*W*H
    output = net(input)
    print(output)
    
    
AlexNet

 

4.2 定义loss函数

  pytorch中常用的loss函数有:

  nn.L1Loss()  

nn.L1Loss(): 取预测值和真实值差的绝对值,最后平均数
x = torch.tensor([[1,1],[2,2]], dtype=torch.float)  #计算loss时需要float类型
y = torch.tensor([[3,3],[4,4]], dtype=torch.float)
criterion = nn.L1Loss()
loss = criterion(x, y)   #(|3-1|+|3-1|+|4-2|+|4-2|)/4=2.0
print(loss.item()) # 2.0

  nn.SmoothL1Loss(size_average=None, reduce=True,reduction=‘mean‘)    

  #reduce为False时, 返回向量, 返回整个bacth的每一个loss

  # reduce 默认为True, 返回标量, size_average为True时返回batch_loss的平均值, 为False时返回batch_loss的和(size_average废弃,由reduction取代)

技术图片

nn.SmoothL1Loss():  在(-1, 1)范围内是平方loss(L2 loss), 其他范围内是L1 loss
x = torch.tensor([[1,1],[2,2]], dtype=torch.float)  #计算loss时需要float类型
y = torch.tensor([[1.5,1.5],[4,4]], dtype=torch.float)
criterion = nn.SmoothL1Loss()
loss = criterion(x, y)   #(((1.5-1)**2)/2+((1.5-1)**2)/2+|4-2|-0.5+|4-2|-0.5)/4=2.0
print(loss.item()) # 0.8125

  nn.MSELoss()

技术图片

 

nn.MSELoss():  平方loss(L2 loss), 最后平均数
x = torch.tensor([[1,1],[2,2]], dtype=torch.float)  #计算loss时需要float类型
y = torch.tensor([[3,3],[4,4]], dtype=torch.float)
criterion = nn.MSELoss()
loss = criterion(x, y)   #((3-1)**2+(3-1)**2+(4-2)**2+4-2)**2)/4=4.0
print(loss.item()) # 4

  nn.NLLLoss()  : 负对数似然损失函数(Negative Log Likelihood)

    和CrossEntropyLoss()的唯一区别是,不会对输入值进行softmax计算。(因此model计算输出时,最后一层需要加上LogSoftmax)

技术图片

                            (假如x=[1, 2, 3], class=0; 则f=x[0]=1)

nn.NLLLoss()  : 负对数似然损失函数(Negative Log Likelihood)
input = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)  #必须是torch.long类型
criterion = nn.NLLLoss()
loss = criterion(nn.LogSoftmax(dim=1)(input), target)
print(loss.item())

  nn.CrossEntropyLoss() 交叉熵函数
          nn.LogSoftmax()和nn.NLLLoss()结合体:会对输入值使用softmax,再进行计算(因此model计算输出时不需要进行softmax)

    (参考: https://www.cnblogs.com/marsggbo/p/10401215.html)

loss = nn.CrossEntropyLoss()
#input = torch.randn(3, 5, requires_grad=True)
#target = torch.empty(3, dtype=torch.long).random_(5)  #必须是torch.long类型
loss = nn.CrossEntropyLoss()
input = torch.tensor([[-0.7678,  0.2773, -0.9249,  1.4503,  0.5256],
        [-0.8529, -1.4283, -0.3284,  1.8608, -0.3206],
        [ 0.1201, -0.7239,  0.6798, -0.8335, -2.1710]], requires_grad=True)

target = torch.tensor([0, 0, 1], dtype=torch.long)  #必须是torch.long类型, 且input中每一行对应的target中的一个数字(不是one-hot)
output = loss(input, target)
print(output.item())


#nn.LogSoftmax()和nn.NLLLoss()分开计算如下:
input = torch.tensor([[-0.7678,  0.2773, -0.9249,  1.4503,  0.5256],
        [-0.8529, -1.4283, -0.3284,  1.8608, -0.3206],
        [ 0.1201, -0.7239,  0.6798, -0.8335, -2.1710]], requires_grad=True)
target = torch.tensor([0, 0, 1], dtype=torch.long)  #必须是torch.long类型
sft = nn.LogSoftmax(dim=1)(input)
nls = nn.NLLLoss()(sft, target)

   numpy实现交叉熵函数

技术图片
def label_encoder(target, nclass):
    label = np.zeros((target.shape[0],nclass))
    for i in range(target.shape[0]):
        label[i][target[i]]=1
    print(label)
    return label

def cross_entropy_loss(pred, target):
    target = label_encoder(target, pred.shape[1])  #one-hot编码
    pred_exp = np.exp(pred)
    pred_sft = pred_exp/(np.sum(pred_exp, axis=1)[:,None])
    print(np.log(pred_sft))
    loss = -np.sum(np.log(pred_sft)*target)/pred.shape[0]  #取一个batch的平均值
    print(loss)
    return loss
    
if __name__=="__main__":
    input = np.array([[-0.7678,  0.2773, -0.9249,  1.4503,  0.5256],
        [-0.8529, -1.4283, -0.3284,  1.8608, -0.3206],
        [ 0.1201, -0.7239,  0.6798, -0.8335, -2.1710]])
    target = np.array([0, 0, 1])
    loss = cross_entropy_loss(input,target)
numpy实现交叉熵

 

技术图片

  nn.BCELoss()  二分类时的交叉熵(Bianry cross entropy),

    nn.CrossEntropyLoss()的特例,即分类限定为二分类,label必须为0,1;  模型输出最后一层需要用sigmoid函数

criterion = nn.BCELoss()
input = torch.randn(5, 1, requires_grad=True)
target = torch.empty(5,1).random_(2)
pre = nn.Sigmoid()(input)
loss = criterion(pre, target)
print(loss.item())

  nn.BCEWithLogitsLoss(): 将nn.sigmoid()和nn.BCELoss()结合

criterion = nn.BCEWithLogitsLoss()
input = torch.randn(5, 1, requires_grad=True)
target = torch.empty(5,1).random_(2)
loss = criterion(input, target)
print(loss.item())

 

4.3 定义优化器

  通过loss函数计算出网络的预测值和真实值之间的loss后,loss.backward()能将梯度反向传播,需要根据梯度来更新网络的权重系数。优化器能帮我们实现权重系数的更新。

  不采用优化器:

#不用优化器,更新系数
criterion = nn.CrossEntropyLoss() input = torch.randn(5, 2, requires_grad=True) target = torch.empty(5,1).random_(2) pre = net(input) loss = criterion(pre, target) net.zero_grad() loss.backward() learing_rate=0.01 for f in net.parameters(): f.data.sub_(f.grad.data*learing_rate) #更新系数

  采用优化器:

#采用优化器,更新系数
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.01)

criterion = nn.CrossEntropyLoss()
input = torch.randn(5, 2, requires_grad=True)
target = torch.empty(5,1).random_(2)
optimizer.zero_grad()
pre = net(input)
loss = criterion(pre, target)
loss.backward()
optimizer.step()    #更新系数

 

4.4 定义DataLoader

  进行网络训练时,可以一次性导入所有数据(BGD,batch gradient descent), 可以一次导入一条数据(SGD, stochastic gradient descent),还可以一次导入部分数据(MBGD, Mini-batch gradient descent), 目前MBGD为较为常用的方法。而且一般情况,无特殊说明时,论文里面提及SGD,都指代的时MGBD的方式进行数据导入和网络训练。

  采用pytorch自带的数据集:

#采用pytorch自带的数据集
import torchvision
import torchvision.transform as transforms
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))
    ]
    )
trainset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform = transform)  #下载数据集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)             #每一个mini-batch,导入4条数据

  采用自定义的数据集:

技术图片
class RandomDataset(Dataset):

    def __init__(self, size, length):
        self.len = length
        self.data = torch.randn(length, size)

    def __getitem__(self, index):
        return self.data[index]

    def __len__(self):
        return self.len

rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),
                         batch_size=batch_size, shuffle=True)
自定义数据集一
技术图片
class MyDataset(Dataset):

    def __init__(self, root_dir, annotations_file, transform=None):

        self.root_dir = root_dir
        self.annotations_file = annotations_file
        self.transform = transform

        if not os.path.isfile(self.annotations_file):
            print(self.annotations_file + does not exist!)
        self.file_info = pd.read_csv(annotations_file, index_col=0)
        self.size = len(self.file_info)

    def __len__(self):
        return self.size

    def __getitem__(self, idx):
        image_path = self.file_info[path][idx]
        if not os.path.isfile(image_path):
            print(image_path +   does not exist!)
            return None

        image = Image.open(image_path).convert(RGB)
        label_species = int(self.file_info.iloc[idx][species])

        sample = {image: image, species: label_species}
        if self.transform:
            sample[image] = self.transform(image)
        return sample

train_transforms = transforms.Compose([transforms.Resize((600, 600)),
                       transforms.RandomCrop(500),
                                       transforms.RandomHorizontalFlip(),
                                       transforms.ToTensor(),
                                       ])
val_transforms = transforms.Compose([transforms.Resize((500, 500)),
                                     transforms.ToTensor()
                                     ])

train_dataset = MyDataset(root_dir= ROOT_DIR + TRAIN_DIR,
                          annotations_file= TRAIN_ANNO,
                          transform=train_transforms)

test_dataset = MyDataset(root_dir= ROOT_DIR + VAL_DIR,
                         annotations_file= VAL_ANNO,
                         transform=val_transforms)

train_loader = DataLoader(dataset=train_dataset, batch_size=8, shuffle=True)
test_loader = DataLoader(dataset=test_dataset)
自定义数据集二

4.5 神经网络训练:

  准备好数据集,定义好模型,loss函数,优化器,数据迭代器,便可以进行网络训练了。下面是一个简单的图片分类器,将图片分成三类:兔子,老鼠,鸡

  A. 准备数据集的label文件:

技术图片
import pandas as pd
import os
from PIL import Image

# ROOTS = ../Dataset/ 
ROOTS = /home/ai/project/data/project_I/Dataset/  
PHASE = [train, val]
SPECIES = [rabbits, rats, chickens]  # [0,1,2]

DATA_info = {train: {path: [], species: []},
             val: {path: [], species: []}
             }
for p in PHASE:
    for s in SPECIES:
        DATA_DIR = ROOTS + p + / + s
        DATA_NAME = os.listdir(DATA_DIR)

        for item in DATA_NAME:
            try:
                img = Image.open(os.path.join(DATA_DIR, item))
            except OSError:
                pass
            else:
                DATA_info[p][path].append(os.path.join(DATA_DIR, item))
                if s == rabbits:
                    DATA_info[p][species].append(0)
                elif s == rats:
                    DATA_info[p][species].append(1)
                else:
                    DATA_info[p][species].append(2)

    ANNOTATION = pd.DataFrame(DATA_info[p])
    ANNOTATION.to_csv(Species_%s_annotation.csv % p)
    print(Species_%s_annotation file is saved. % p)
生成label文件

  生成的label文件格式如下,包括图片路径,以及对应的分类(0,1, 2依次代表‘rabbits‘, ‘rats‘, ‘chickens‘)

技术图片

 

 

   B. 定义网络结构:

    可以自己搭建全新的网络结构, 也可以采用成熟的网络架构,如AlexNet,VGG,GoogleNet, Resnet等。下面分别展示了自定义和借用Resnet网络结构:

技术图片
import torch.nn as nn
import torchvision
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 3, 3)
        self.maxpool1 = nn.MaxPool2d(kernel_size=2)
        self.relu1 = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(3, 6, 3)
        self.maxpool2 = nn.MaxPool2d(kernel_size=2)
        self.relu2 = nn.ReLU(inplace=True)
        
        self.conv3 = nn.Conv2d(6,12,3)

        self.fc1 = nn.Linear(12 * 123 * 123, 150)
        self.relu3 = nn.ReLU(inplace=True)

        self.drop = nn.Dropout2d()

        self.fc2 = nn.Linear(150, 3)
        # self.softmax1 = nn.Softmax(dim=1)

    def forward(self, x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.relu1(x)

        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.relu2(x)
        
        x =nn.ReLU(nn.MaxPool2d(self.conv3(x),kernel_size=3))

        # print(x.shape)
        x = x.view(-1, 12 * 123 * 123)
        x = self.fc1(x)
        x = self.relu3(x)

        x = F.dropout(x, training=self.training)

        x_species = self.fc2(x)
        # x_species = self.softmax1(x_species)

        return x_species
自定义网络结构
技术图片
import torch.nn as nn
import torchvision
import torch.nn.functional as F
from torchvision import models


class Net(nn.Module):
    def __init__(self, model):
        super(Net, self).__init__()
        # self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
        # self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
        # self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
        # self.conv4 = nn.Conv2d(128, 128, 3, padding=1)
        # self.conv5 = nn.Conv2d(128, 256, 3, padding=1)
        # self.conv6 = nn.Conv2d(256, 256, 3, padding=1)
        # self.conv7 = nn.Conv2d(256, 256, 3, padding=1)
                
        self.resnet18_layer = nn.Sequential(*list(model.children())[:-1])    
        
        self.fc1 = nn.Linear(512 * 1 * 1, 150)
        self.relu3 = nn.ReLU(inplace=True)

        # self.drop = nn.Dropout2d()

        self.fc2 = nn.Linear(150, 3)
        self.softmax1 = nn.Softmax(dim=1)

    def forward(self, x):
        # x = F.relu(self.conv1(x))
        # x = F.max_pool2d(F.relu(self.conv2(x)),2)
        # x = F.relu(self.conv3(x))
        # x = F.max_pool2d(F.relu(self.conv4(x)),2)
        # x = F.relu(self.conv5(x))
        # x = F.relu(self.conv6(x))
        # x = F.max_pool2d(F.relu(self.conv7(x)),2)
        
        x = self.resnet18_layer(x)    
        
        # x = F.dropout(x, self.training)
        
        #print(x.shape)
        x = x.view(-1, 512 * 1 * 1)
        x = self.fc1(x)
        x = self.relu3(x)

        # x = F.dropout(x, training=self.training)

        x_species = self.fc2(x)
        #x_species = self.softmax1(x_species)

        return x_species
采用Resnet

  C. 定义训练主函数:

  训练网络时,可以对自定义的网络从头训练,也可以采用在ImageNet上预训练好的网络,进行finetune,这里采用预训练好的Resnet16.

技术图片
import os
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
import torch
from Species_Network import *
from torchvision.transforms import transforms
from PIL import Image
import pandas as pd
import random
from torch import optim
from torch.optim import lr_scheduler
import copy

ROOT_DIR = ../Dataset/
TRAIN_DIR = train/
VAL_DIR = val/
TRAIN_ANNO = Species_train_annotation.csv
VAL_ANNO = Species_val_annotation.csv
CLASSES = [Mammals, Birds]
SPECIES = [rabbits, rats, chickens]

class MyDataset():

    def __init__(self, root_dir, annotations_file, transform=None):

        self.root_dir = root_dir
        self.annotations_file = annotations_file
        self.transform = transform

        if not os.path.isfile(self.annotations_file):
            print(self.annotations_file + does not exist!)
        self.file_info = pd.read_csv(annotations_file, index_col=0)
        self.size = len(self.file_info)

    def __len__(self):
        return self.size

    def __getitem__(self, idx):
        image_path = self.file_info[path][idx]
        if not os.path.isfile(image_path):
            print(image_path +   does not exist!)
            return None

        image = Image.open(image_path).convert(RGB)
        label_species = int(self.file_info.iloc[idx][species])

        sample = {image: image, species: label_species}
        if self.transform:
            sample[image] = self.transform(image)
        return sample

train_transforms = transforms.Compose([transforms.Resize((500, 500)),
                                       transforms.RandomHorizontalFlip(),
                                       transforms.ToTensor(),
                                       ])
val_transforms = transforms.Compose([transforms.Resize((500, 500)),
                                     transforms.ToTensor()
                                     ])

train_dataset = MyDataset(root_dir= ROOT_DIR + TRAIN_DIR,
                          annotations_file= TRAIN_ANNO,
                          transform=train_transforms)

test_dataset = MyDataset(root_dir= ROOT_DIR + VAL_DIR,
                         annotations_file= VAL_ANNO,
                         transform=val_transforms)

train_loader = DataLoader(dataset=train_dataset, batch_size=128, shuffle=True)
test_loader = DataLoader(dataset=test_dataset)
data_loaders = {train: train_loader, val: test_loader}

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

def visualize_dataset():
    print(len(train_dataset))
    idx = random.randint(0, len(train_dataset))
    sample = train_loader.dataset[idx]
    print(idx, sample[image].shape, SPECIES[sample[species]])
    img = sample[image]
    plt.imshow(transforms.ToPILImage()(img))
    plt.show()
visualize_dataset()

def train_model(model, criterion, optimizer, scheduler, num_epochs=50):
    Loss_list = {train: [], val: []}
    Accuracy_list_species = {train: [], val: []}

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print(Epoch {}/{}.format(epoch, num_epochs - 1))
        print(-* * 10)

        # Each epoch has a training and validation phase
        for phase in [train, val]:
            if phase == train:
                model.train()
            else:
                model.eval()

            running_loss = 0.0
            corrects_species = 0

            for idx,data in enumerate(data_loaders[phase]):
                #print(phase+ processing: {}th batch..format(idx))
                inputs = data[image].to(device)
                labels_species = data[species].to(device)
                optimizer.zero_grad()

                with torch.set_grad_enabled(phase == train):
                    x_species = model(inputs)
                    x_species = x_species.view(-1,3)

                    _, preds_species = torch.max(x_species, 1)

                    loss = criterion(x_species, labels_species)

                    if phase == train:
                        loss.backward()
                        optimizer.step()

                running_loss += loss.item() * inputs.size(0)

                corrects_species += torch.sum(preds_species == labels_species)

            epoch_loss = running_loss / len(data_loaders[phase].dataset)
            Loss_list[phase].append(epoch_loss)

            epoch_acc_species = corrects_species.double() / len(data_loaders[phase].dataset)
            epoch_acc = epoch_acc_species

            Accuracy_list_species[phase].append(100 * epoch_acc_species)
            print({} Loss: {:.4f}  Acc_species: {:.2%}.format(phase, epoch_loss,epoch_acc_species))

            if phase == val and epoch_acc > best_acc:

                best_acc = epoch_acc_species
                best_model_wts = copy.deepcopy(model.state_dict())
                print(Best val species Acc: {:.2%}.format(best_acc))

    model.load_state_dict(best_model_wts)
    torch.save(model.state_dict(), best_model.pt)
    print(Best val species Acc: {:.2%}.format(best_acc))
    return model, Loss_list,Accuracy_list_species

network = Net().to(device)
optimizer = optim.SGD(network.parameters(), lr=0.005, momentum=0.9, weight_decay=1e-6)  #weight_decay:L2正则项惩罚
criterion = nn.CrossEntropyLoss()
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1) # Decay LR by a factor of 0.1 every 1 epochs
model, Loss_list, Accuracy_list_species = train_model(network, criterion, optimizer, exp_lr_scheduler, num_epochs=100)

x = range(0, 100)
y1 = Loss_list["val"]
y2 = Loss_list["train"]

plt.plot(x, y1, color="r", linestyle="-", marker="o", linewidth=1, label="val")
plt.plot(x, y2, color="b", linestyle="-", marker="o", linewidth=1, label="train")
plt.legend()
plt.title(train and val loss vs. epoches)
plt.ylabel(loss)
plt.savefig("train and val loss vs epoches.jpg")
plt.close(all) # 关闭图 0

y5 = Accuracy_list_species["train"]
y6 = Accuracy_list_species["val"]
plt.plot(x, y5, color="r", linestyle="-", marker=".", linewidth=1, label="train")
plt.plot(x, y6, color="b", linestyle="-", marker=".", linewidth=1, label="val")
plt.legend()
plt.title(train and val Species acc vs. epoches)
plt.ylabel(Species accuracy)
plt.savefig("train and val Species acc vs epoches.jpg")
plt.close(all)

######################################## Visualization ##################################
def visualize_model(model):
    model.eval()
    with torch.no_grad():
        for i, data in enumerate(data_loaders[val]):
            inputs = data[image]
            labels_species = data[species].to(device)

            x_species = model(inputs.to(device))
            x_species = x_species.view( -1,2)
            _, preds_species = torch.max(x_species, 1)

            print(inputs.shape)
            plt.imshow(transforms.ToPILImage()(inputs.squeeze(0)))
            plt.title(predicted species: {}\n ground-truth species:{}.format(SPECIES[preds_species],SPECIES[labels_species]))
            plt.show()

visualize_model(model)
自定义网络训练
技术图片
import os
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
import torch
from Spe_Network import *
from torchvision.transforms import transforms
from PIL import Image
import pandas as pd
import random
from torch import optim
from torch.optim import lr_scheduler
import copy
from torchvision import models
import logging

logging.basicConfig(level=logging.DEBUG, filename="train.log", filemode="a+")

ROOT_DIR = /home/ai/project/data/project_I/Dataset/  
TRAIN_DIR = train/
VAL_DIR = val/
TRAIN_ANNO = Species_train_annotation.csv
VAL_ANNO = Species_val_annotation.csv
CLASSES = [Mammals, Birds]
SPECIES = [rabbits, rats, chickens]

class MyDataset(Dataset):

    def __init__(self, root_dir, annotations_file, transform=None):

        self.root_dir = root_dir
        self.annotations_file = annotations_file
        self.transform = transform

        if not os.path.isfile(self.annotations_file):
            print(self.annotations_file + does not exist!)
        self.file_info = pd.read_csv(annotations_file, index_col=0)
        self.size = len(self.file_info)

    def __len__(self):
        return self.size

    def __getitem__(self, idx):
        image_path = self.file_info[path][idx]
        if not os.path.isfile(image_path):
            print(image_path +   does not exist!)
            return None

        image = Image.open(image_path).convert(RGB)
        label_species = int(self.file_info.iloc[idx][species])

        sample = {image: image, species: label_species}
        if self.transform:
            sample[image] = self.transform(image)
        return sample

train_transforms = transforms.Compose([transforms.Resize((600, 600)),
                       transforms.RandomCrop(500),
                                       transforms.RandomHorizontalFlip(),
                                       transforms.ToTensor(),
                                       ])
val_transforms = transforms.Compose([transforms.Resize((500, 500)),
                                     transforms.ToTensor()
                                     ])

train_dataset = MyDataset(root_dir= ROOT_DIR + TRAIN_DIR,
                          annotations_file= TRAIN_ANNO,
                          transform=train_transforms)

test_dataset = MyDataset(root_dir= ROOT_DIR + VAL_DIR,
                         annotations_file= VAL_ANNO,
                         transform=val_transforms)

train_loader = DataLoader(dataset=train_dataset, batch_size=8, shuffle=True)
test_loader = DataLoader(dataset=test_dataset)
data_loaders = {train: train_loader, val: test_loader}

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

def visualize_dataset():
    print(len(train_dataset))
    idx = random.randint(0, len(train_dataset))
    sample = train_loader.dataset[idx]
    print(idx, sample[image].shape, SPECIES[sample[species]])
    img = sample[image]
    plt.imshow(transforms.ToPILImage()(img))
    plt.show()
visualize_dataset()

def train_model(model, criterion, optimizer, scheduler, num_epochs=50):
    Loss_list = {train: [], val: []}
    Accuracy_list_species = {train: [], val: []}

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print(Epoch {}/{}.format(epoch, num_epochs - 1))
        print(-* * 10)

        # Each epoch has a training and validation phase
        for phase in [train, val]:
            if phase == train:
                model.train()
            else:
                model.eval()

            running_loss = 0.0
            corrects_species = 0

            for idx,data in enumerate(data_loaders[phase]):
                #print(phase+ processing: {}th batch..format(idx))
                inputs = data[image].to(device)
                labels_species = data[species].to(device)
                optimizer.zero_grad()

                with torch.set_grad_enabled(phase == train):
                    x_species = model(inputs)
                    x_species = x_species.view(-1,3)

                    _, preds_species = torch.max(x_species, 1)

                    loss = criterion(x_species, labels_species)

                    if phase == train:
                        loss.backward()
                        optimizer.step()

                running_loss += loss.item() * inputs.size(0)

                corrects_species += torch.sum(preds_species == labels_species)

            epoch_loss = running_loss / len(data_loaders[phase].dataset)
            Loss_list[phase].append(epoch_loss)

            epoch_acc_species = corrects_species.double() / len(data_loaders[phase].dataset)
            epoch_acc = epoch_acc_species

            Accuracy_list_species[phase].append(100 * epoch_acc_species)
            print({} Loss: {:.4f}  Acc_species: {:.2%}.format(phase, epoch_loss,epoch_acc_species))
            logging.info({} Loss: {:.4f}  Acc_species: {:.2%}.format(phase, epoch_loss,epoch_acc_species))

            if phase == val and epoch_acc > best_acc:

                best_acc = epoch_acc_species
                best_model_wts = copy.deepcopy(model.state_dict())
                print(Best val species Acc: {:.2%}.format(best_acc))
                logging.info(Best val species Acc: {:.2%}.format(best_acc))

    model.load_state_dict(best_model_wts)
    torch.save(model.state_dict(), best_model.pt)
    print(Best val species Acc: {:.2%}.format(best_acc))
    logging.info(Best val species Acc: {:.2%}.format(best_acc))
    return model, Loss_list,Accuracy_list_species
    
    
# vgg16 = models.vgg16(pretrained=True)
res18 = models.resnet18(pretrained=True)
network = Net(res18).to(device)
optimizer = optim.SGD(network.parameters(), lr=0.005, momentum=0.9, weight_decay=1e-4)  #weight_decay:L2正则项惩罚
criterion = nn.CrossEntropyLoss()
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1) # Decay LR by a factor of 0.1 every 1 epochs
model, Loss_list, Accuracy_list_species = train_model(network, criterion, optimizer, exp_lr_scheduler, num_epochs=100)

# x = range(0, 100)
# y1 = Loss_list["val"]
# y2 = Loss_list["train"]

# plt.plot(x, y1, color="r", linestyle="-", marker="o", linewidth=1, label="val")
# plt.plot(x, y2, color="b", linestyle="-", marker="o", linewidth=1, label="train")
# plt.legend()
# plt.title(train and val loss vs. epoches)
# plt.ylabel(loss)
# plt.savefig("train and val loss vs epoches.jpg")
# plt.close(all) # 关闭图 0

# y5 = Accuracy_list_species["train"]
# y6 = Accuracy_list_species["val"]
# plt.plot(x, y5, color="r", linestyle="-", marker=".", linewidth=1, label="train")
# plt.plot(x, y6, color="b", linestyle="-", marker=".", linewidth=1, label="val")
# plt.legend()
# plt.title(train and val Species acc vs. epoches)
# plt.ylabel(Species accuracy)
# plt.savefig("train and val Species acc vs epoches.jpg")
# plt.close(all)

######################################## Visualization ##################################
def visualize_model(model):
    model.eval()
    with torch.no_grad():
        for i, data in enumerate(data_loaders[val]):
            inputs = data[image]
            labels_species = data[species].to(device)

            x_species = model(inputs.to(device))
            x_species = x_species.view( -1,2)
            _, preds_species = torch.max(x_species, 1)

            print(inputs.shape)
            plt.imshow(transforms.ToPILImage()(inputs.squeeze(0)))
            plt.title(predicted species: {}\n ground-truth species:{}.format(SPECIES[preds_species],SPECIES[labels_species]))
            plt.show()

# visualize_model(model)
finetune Resnet网络

 参考:

  https://github.com/Hong-Bo/hands-on-pytorch/blob/master/alex_net/alex_net.py

  https://pytorch.org/tutorials/

pytorch基础学习(一)

标签:创建   length   imagenet   行数据   style   二分   表示   成熟   download   

原文地址:https://www.cnblogs.com/silence-cho/p/11404817.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!