码迷,mamicode.com
首页 > 其他好文 > 详细

前端校招知识体系之计算机网络

时间:2019-12-11 17:21:32      阅读:83      评论:0      收藏:0      [点我收藏+]

标签:完全   permanent   服务器   推送   tls   传输过程   包括   进入   head   

 

计算机网络体系结构

 

OSI的七层协议体系结构的概念清楚,理论也比较完整,但它既复杂又不实用。TCP/Ip体系结构则不同,但它现在却得到了非常广泛的应用,不过,从实质上来讲,TCP/IP只有最上面的三层,因为最下面的网络接口层并没有什么具体内容。因此在学习计算机网络的原理时通常采用折中的办法,即综合这两种的优点,采用一种只有五层协议的体系结构。

  • OSI的七层协议:应用层、表示层、会话层、运输层、网络层、数据链路层、物理层
  • TCP/IP的四层协议:应用层、运输层、网际层、网络接口层
  • 五层协议:应用层、运输层、网络层、数据链路层、物理层

这里简要介绍一下五层协议中各层的作用

1)应用层:应用层是体系结构中的最高层。应用层的任务是通过应用程序间的交互来完成特定网络应用,应用层协议定义的是应用进程间通信和交互的规则,应用层交互的数据单元称为报文。

2)运输层:负责向两台主机中进程之间的通信提供通用的数据传输服务。由于一台主机可同时运行多个进程,因此运输层有复用和分层的功能,复用就是多个应用层进程可同时使用下面运输层的服务,分用和复用相反,是运输层把收到的信息分别交付上面应用层中的相应进程。

3)网络层:网络层负责为分组交换网上的不同主机提供通信服务。在发送数据时,网络层把运输层产生的报文段或用户数据报封装成分组或包进行传送。另一个任务就是要选择合适的路由,使源主机运输层所传下来的分组能够通过网络中的路由器找到目的主机。

4)数据链路层:

数据链路层(data link layer)通常简称为链路层。两台主机之间的数据传输,总是在一段一段的链路上传送的,这就需要使用专门的链路层的协议。在两个相邻节点之间传送数据时,数据链路层将网络层交下来的 IP 数据报组装成帧,在两个相邻节点间的链路上传送帧。每一帧包括数据和必要的控制信息(如:同步信息,地址信息,差错控制等)。

在接收数据时,控制信息使接收端能够知道一个帧从哪个比特开始和到哪个比特结束。这样,数据链路层在收到一个帧后,就可从中提出数据部分,上交给网络层。控制信息还使接收端能够检测到所收到的帧中有无差错。如果发现差错,数据链路层就简单地丢弃这个出了差错的帧,以避免继续在网络中传送下去白白浪费网络资源。如果需要改正数据在链路层传输时出现差错(这就是说,数据链路层不仅要检错,而且还要纠错),那么就要采用可靠性传输协议来纠正出现的差错。这种方法会使链路层的协议复杂些。

5)物理层:

在物理层上所传送的数据单位是比特。物理层(physical layer)的作用是实现相邻计算机节点之间比特流的透明传送,尽可能屏蔽掉具体传输介质和物理设备的差异。使其上面的数据链路层不必考虑网络的具体传输介质是什么。“透明传送比特流”表示经实际电路传送后的比特流没有发生变化,对传送的比特流来说,这个电路好像是看不见的。

请注意,传递信息所利用的一些物理媒体如双绞线、同轴电缆等并不在物理层协议之内而是在物理层下面。

技术图片

HTTP

1)HTTP 1.1/2.0

  • HTTP1.1 的主要变化:

1. HTTP1.0 经过多年发展,在 1.1 提出了改进。首先是提出了长连接,HTTP 可以在一次 TCP 连接中不断发送请求。

2. 然后 HTTP1.1 支持只发送 header 而不发送 body。原因是先用 header 判断能否成功,再发数据,节约带宽,事实上,post 请求默认就是这样做的。

3. HTTP1.1 的 host 字段。由于虚拟主机可以支持多个域名,所以一般将域名解析后得到 host。

  • HTTP2.0 的主要变化:

1. HTTP2.0 支持多路复用,同一个连接可以并发处理多个请求,方法是把 HTTP数据包拆为多个帧,并发有序的发送,根据序号在另一端进行重组,而不需要一个个 HTTP请求顺序到达;

2. HTTP2.0 支持服务端推送,就是服务端在 HTTP 请求到达后,除了返回数据之外,还推送了额外的内容给客户端;

3. HTTP2.0 压缩了请求头,同时基本单位是二进制帧流,这样的数据占用空间更少;

4. HTTP2.0 适用于 HTTPS 场景,因为其在 HTTP和 TCP 中间加了一层 SSL 层。

 

2)HTTP状态码

  • 1XX 信息

1. 100 Continue :表明到目前为止都很正常,客户端可以继续发送请求或者忽略这个响应。

  • 2XX 成功

1. 200 OK

2. 204 No Content :请求已经成功处理,但是返回的响应报文不包含实体的主体部分。一般在只需要从客户端往服务器发送信息,而不需要返回数据时使用。

3. 206 Partial Content :表示客户端进行了范围请求,响应报文包含由 Content-Range 指定范围的实体内容。

  • 3XX 重定向

1. 301 Moved Permanently :永久性重定向;

2. 302 Found :临时性重定向;

3. 303 See Other :和 302 有着相同的功能,但是 303 明确要求客户端应该采用 GET 方法获取资源。

4. 304 Not Modified :如果请求报文首部包含一些条件,例如:If-Match,If-Modified-Since,If-None-Match,If-Range,If-Unmodified-Since,如果不满足条件,则服务器会返回 304 状态码。

5. 307 Temporary Redirect :临时重定向,与 302 的含义类似,但是 307 要求浏览器不会把重定向请求的 POST 方法改成 GET 方法。

  • 4XX 客户端错误

1. 400 Bad Request :请求报文中存在语法错误。

2. 401 Unauthorized :该状态码表示发送的请求需要有认证信息(BASIC 认证、DIGEST 认证)。如果之前已进行过一次请求,则表示用户认证失败。

3. 403 Forbidden :请求被拒绝。

4. 404 Not Found

  • 5XX 服务器错误

1. 500 Internal Server Error :服务器正在执行请求时发生错误;

2. 503 Service Unavailable :服务器暂时处于超负载或正在进行停机维护,现在无法处理请求。

 

3)HTTP方法

客户端发送的 请求报文 第一行为请求行,包含了方法字段。

1. GET:获取资源,当前网络中绝大部分使用的都是 GET;

2. HEAD:获取报文首部,和 GET 方法类似,但是不返回报文实体主体部分;

3. POST:传输实体主体

4. PUT:上传文件,由于自身不带验证机制,任何人都可以上传文件,因此存在安全性问题,一般不使用该方法。

5. PATCH:对资源进行部分修改。PUT 也可以用于修改资源,但是只能完全替代原始资源,PATCH 允许部分修改。

6. OPTIONS:查询指定的 URL 支持的方法;

7. CONNECT:要求在与代理服务器通信时建立隧道。使用 SSL(Secure Sockets Layer,安全套接层)和 TLS(Transport Layer Security,传输层安全)协议把通信内容加密后经网络隧道传输。

8. TRACE:追踪路径。服务器会将通信路径返回给客户端。发送请求时,在 Max-Forwards 首部字段中填入数值,每经过一个服务器就会减 1,当数值为 0 时就停止传输。通常不会使用 TRACE,并且它容易受到 XST 攻击(Cross-Site Tracing,跨站追踪)。

 

4)在浏览器中输入URL地址到显示主页的过程

1. DNS 解析:浏览器查询 DNS,获取域名对应的 IP 地址:具体过程包括浏览器搜索自身的 DNS 缓存、搜索操作系统的 DNS 缓存、读取本地的 Host 文件和向本地 DNS 服务器进行查询等。对于向本地 DNS 服务器进行查询,如果要查询的域名包含在本地配置区域资源中,则返回解析结果给客户机,完成域名解析(此解析具有权威性);如果要查询的域名不由本地 DNS 服务器区域解析,但该服务器已缓存了此网址映射关系,则调用这个 IP 地址映射,完成域名解析(此解析不具有权威性)。如果本地域名服务器并未缓存该网址映射关系,那么将根据其设置发起递归查询或者迭代查询;

2. TCP 连接:浏览器获得域名对应的 IP 地址以后,浏览器向服务器请求建立链接,发起三次握手;

3. 发送 HTTP 请求:TCP 连接建立起来后,浏览器向服务器发送 HTTP 请求;

4. 服务器处理请求并返回 HTTP 报文:服务器接收到这个请求,并根据路径参数映射到特定的请求处理器进行处理,并将处理结果及相应的视图返回给浏览器;

5. 浏览器解析渲染页面:浏览器解析并渲染视图,若遇到对 js 文件、css 文件及图片等静态资源的引用,则重复上述步骤并向服务器请求这些资源;浏览器根据其请求到的资源、数据渲染页面,最终向用户呈现一个完整的页面。

6. 连接结束。

 

5)缓存控制策略

浏览器会先询问是否有命中缓存,没有命中的缓存则浏览器再从服务器获取资源并将资源放进缓存仓库中,下次则可以从缓存中拿资源了。为方便理解,我们认为浏览器提供了缓存数据库,只要浏览器发现满足了某些缓存规则,就可以直接从缓存数据库中取出你需要的资源。

上述是一个简单过程,但是事实上的缓存策略还要更复杂一点。简单来说,http根据是否要向服务器发送请求将缓存规则分为了两类:强缓存和对比缓存。

详细介绍可参考这篇文章

 

TCP

1)3次握手、4次挥手

3次握手:

技术图片

TCP 建立连接的过程叫做握手,握手需要在客户和服务器之间交换三个 TCP 报文段。

最初客户端和服务端都处于 CLOSED(关闭) 状态。本例中 A(Client) 主动打开连接,B(Server) 被动打开连接。

一开始,B 的 TCP 服务器进程首先创建传输控制块TCB,准备接受客户端进程的连接请求。然后服务端进程就处于 LISTEN(监听) 状态,等待客户端的连接请求。如有,立即作出响应。

第一次握手:A 的 TCP 客户端进程也是首先创建传输控制块 TCB。然后,在打算建立 TCP 连接时,向 B 发出连接请求报文段,这时首部中的同步位 SYN=1,同时选择一个初始序号 seq = x。TCP 规定,SYN 报文段(即 SYN = 1 的报文段)不能携带数据,但要消耗掉一个序号。这时,TCP 客户进程进入 SYN-SENT(同步已发送)状态。

第二次握手:B 收到连接请求报文后,如果同意建立连接,则向 A 发送确认。在确认报文段中应把 SYN 位和 ACK 位都置 1,确认号是 ack = x + 1,同时也为自己选择一个初始序号 seq = y。请注意,这个报文段也不能携带数据,但同样要消耗掉一个序号。这时 TCP 服务端进程进入 SYN-RCVD(同步收到)状态。

第三次握手:TCP 客户进程收到 B 的确认后,还要向 B 给出确认。确认报文段的 ACK 置 1,确认号 ack = y + 1,而自己的序号 seq = x + 1。这时 ACK 报文段可以携带数据。但如果不携带数据则不消耗序号,这种情况下,下一个数据报文段的序号仍是 seq = x + 1。这时,TCP 连接已经建立,A 进入 ESTABLISHED(已建立连接)状态。

4次挥手:

技术图片

据传输结束后,通信的双方都可以释放连接。现在 A 和 B 都处于 ESTABLISHED 状态。

第一次挥手:A 的应用进程先向其 TCP 发出连接释放报文段,并停止再发送数据,主动关闭 TCP 连接。A 把连接释放报文段首部的终止控制位 FIN 置 1,其序号 seq = u(等于前面已传送过的数据的最后一个字节的序号加 1),这时 A 进入 FIN-WAIT-1(终止等待1)状态,等待 B 的确认。请注意:TCP 规定,FIN 报文段即使不携带数据,也将消耗掉一个序号。

第二次挥手:B 收到连接释放报文段后立即发出确认,确认号是 ack = u + 1,而这个报文段自己的序号是 v(等于 B 前面已经传送过的数据的最后一个字节的序号加1),然后 B 就进入 CLOSE-WAIT(关闭等待)状态。TCP 服务端进程这时应通知高层应用进程,因而从 A 到 B 这个方向的连接就释放了,这时的 TCP 连接处于半关闭(half-close)状态,即 A 已经没有数据要发送了,但 B 若发送数据,A 仍要接收。也就是说,从 B 到 A 这个方向的连接并未关闭,这个状态可能会持续一段时间。A 收到来自 B 的确认后,就进入 FIN-WAIT-2(终止等待2)状态,等待 B 发出的连接释放报文段。

第三次挥手:若 B 已经没有要向 A 发送的数据,其应用进程就通知 TCP 释放连接。这时 B 发出的连接释放报文段必须使 FIN = 1。假定 B 的序号为 w(在半关闭状态,B 可能又发送了一些数据)。B 还必须重复上次已发送过的确认号 ack = u + 1。这时 B 就进入 LAST-ACK(最后确认)状态,等待 A 的确认。

第四次挥手:A 在收到 B 的连接释放报文后,必须对此发出确认。在确认报文段中把 ACK 置 1,确认号 ack = w + 1,而自己的序号 seq = u + 1(前面发送的 FIN 报文段要消耗一个序号)。然后进入 TIME-WAIT(时间等待) 状态。请注意,现在 TCP 连接还没有释放掉。必须经过时间等待计时器设置的时间 2MSL(MSL:最长报文段寿命)后,A 才能进入到 CLOSED 状态,然后撤销传输控制块,结束这次 TCP 连接。当然如果 B 一收到 A 的确认就进入 CLOSED 状态,然后撤销传输控制块。所以在释放连接时,B 结束 TCP 连接的时间要早于 A。

2)滑动窗口

TCP 利用滑动窗口实现流量控制的机制。滑动窗口(Sliding window)是一种流量控制技术。早期的网络通信中,通信双方不会考虑网络的拥挤情况直接发送数据。由于大家不知道网络拥塞状况,同时发送数据,导致中间节点阻塞掉包,谁也发不了数据,所以就有了滑动窗口机制来解决此问题。

TCP 中采用滑动窗口来进行传输控制,滑动窗口的大小意味着接收方还有多大的缓冲区可以用于接收数据。发送方可以通过滑动窗口的大小来确定应该发送多少字节的数据。当滑动窗口为 0 时,发送方一般不能再发送数据报,但有两种情况除外,一种情况是可以发送紧急数据,例如,允许用户终止在远端机上的运行进程。另一种情况是发送方可以发送一个 1 字节的数据报来通知接收方重新声明它希望接收的下一字节及发送方的滑动窗口大小。

3)可靠通信

1. 数据包校验:目的是检测数据在传输过程中的任何变化,若校验出包有错,则丢弃报文段并且不给出响应,这时 TCP 发送数据端超时后会重发数据;

2. 对失序数据包重排序:既然 TCP 报文段作为 IP 数据报来传输,而 IP 数据报的到达可能会失序,因此 TCP 报文段的到达也可能会失序。TCP 将对失序数据进行重新排序,然后才交给应用层;

3. 丢弃重复数据:对于重复数据,能够丢弃重复数据;

4. 应答机制:当 TCP 收到发自 TCP 连接另一端的数据,它将发送一个确认。这个确认不是立即发送,通常将推迟几分之一秒;

5. 超时重发:当 TCP 发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段;

6. 流量控制:TCP 连接的每一方都有固定大小的缓冲空间。TCP 的接收端只允许另一端发送接收端缓冲区所能接纳的数据,这可以防止较快主机致使较慢主机的缓冲区溢出,这就是流量控制。TCP 使用的流量控制协议是可变大小的滑动窗口协议。

 

UDP

1)主要特点

1. UDP 是无连接的;

2. UDP 使用尽最大努力交付,即不保证可靠交付,因此主机不需要维持复杂的链接状态(这里面有许多参数);

3. UDP 是面向报文的;

4. UDP 没有拥塞控制,因此网络出现拥塞不会使源主机的发送速率降低(对实时应用很有用,如 直播,实时视频会议等);

5. UDP 支持一对一、一对多、多对一和多对多的交互通信;

6. UDP 的首部开销小,只有 8 个字节,比 TCP 的 20 个字节的首部要短。

2)TCP和UDP的区别

TCP 提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP 不提供广播或多播服务。由于 TCP 要提供可靠的,面向连接的运输服务(TCP 的可靠体现在 TCP 在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完后,还会断开连接用来节约系统资源),这难以避免增加了许多开销,如确认,流量控制,计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。

UDP 在传送数据之前不需要先建立连接,远地主机在收到 UDP 报文后,不需要给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 确是一种最有效的工作方式(一般用于即时通信),比如:QQ 语音、 QQ 视频 、直播等等。

前端校招知识体系之计算机网络

标签:完全   permanent   服务器   推送   tls   传输过程   包括   进入   head   

原文地址:https://www.cnblogs.com/ujoxia/p/11610190.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!