标签:配置 集中 forward form 连接 测试 ack 打印 batch
设计的CNN模型包括一个输入层,输入的是MNIST数据集中28*28*1的灰度图
两个卷积层,
第一层卷积层使用6个3*3的kernel进行filter,步长为1,填充1.这样得到的尺寸是(28+1*2-3)/1+1=28,即6个28*28的feature map
在后面进行池化,尺寸变为14*14
第二层卷积层使用16个5*5的kernel,步长为1,无填充,得到(14-5)/1+1=10,即16个10*10的feature map
池化后尺寸为5*5
后面加两层全连接层,第一层将16*5*5=400个神经元线性变换为120个,第二层将120个变为84个
最后的输出层将84个输出为10个种类
代码如下:
###MNIST数据集上卷积神经网络的简单实现###
# 配置库
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
# 配置参数
torch.manual_seed(1) # 设置随机数种子,确保结果可重复
batch_size = 128 # 批处理大小
learning_rate = 1e-2 # 学习率
num_epoches = 10 # 训练次数
# 加载MNIST数据
# 下载训练集MNIST手写数字训练集
train_dataset = datasets.MNIST(
root=‘./data‘, # 数据保持的位置
train=True, # 训练集
transform=transforms.ToTensor(), # 一个取值范围是【0,255】的PIL.Image
# 转化成取值范围是[0,1.0]的torch.FloatTensor
download=True
)
test_dataset = datasets.MNIST(
root=‘./data‘,
train=False, # 测试集
transform=transforms.ToTensor()
)
# 数据的批处理中,尺寸大小为batch_size
# 在训练集中,shuffle必须设置为True,表示次序是随机的
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 创建CNN模型
# 使用一个类来创建,这个模型包括1个输入层,2个卷积层,2个全连接层和1个输出层。
# 其中卷积层构成为卷积(conv2d)->激励函数(ReLU)->池化(MaxPooling)
# 全连接层由线性层(Linear)构成
# 定义卷积神经网络模型
class Cnn(nn.Module):
def __init__(self, in_dim, n_class): # 28*28*1
super(Cnn, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_dim, 6, 3, stride=1, padding=1), # 28*28
nn.ReLU(True),
nn.MaxPool2d(2, 2), # 14*14
nn.Conv2d(6, 16, 5, stride=1, padding=0), # 10*10*16
nn.ReLU(True),
nn.MaxPool2d(2, 2) # 5*5*16
)
self.fc = nn.Sequential(
nn.Linear(400, 120),
nn.Linear(120, 84),
nn.Linear(84, n_class)
)
def forward(self, x):
out = self.conv(x)
out = out.view(out.size(0), 400) # 400=5*5*16
out = self.fc(out)
return out
# 图片大小是28*28,10是数据的种类
model = Cnn(1, 10)
# 打印模型,呈现网络结构
print(model)
# 模型训练,将img\label都用Variable包装起来,放入model中计算out,最后计算loss和正确率
# 定义loss和optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
# 开始训练
for epoch in range(num_epoches):
running_loss = 0.0
running_acc = 0.0
for i, data in enumerate(train_loader, 1): # 批处理
img, label = data
img = Variable(img)
label = Variable(label)
# 前向传播
out = model(img)
loss = criterion(out, label) # loss
running_loss += loss.item() * label.size(0)
# total loss,由于loss是batch取均值的,需要把batch_size乘进去
_, pred = torch.max(out, 1) # 预测结果
num_correct = (pred == label).sum() # 正确结果的数量
#accuracy = (pred == label).float().mean() # 正确率
running_acc += num_correct.item() # 正确结果的总数
# 后向传播
optimizer.zero_grad() # 梯度清零,以免影响其他batch
loss.backward() # 后向传播,计算梯度
optimizer.step() # 利用梯度更新W,b参数
# 打印一个循环后,训练集合上的loss和正确率
print(‘Train {} epoch, Loss:{:.6f},Acc:{:.6f}‘.format(epoch + 1, running_loss / (len(train_dataset)),
running_acc / (len(train_dataset))))
# 在测试集上测试识别率
# 模型测试
model.eval()
# 由于训练和测试BatchNorm,Dropout配置不同,需要说明是否模型测试
eval_loss = 0
eval_acc = 0
for data in test_loader: # test set批处理
img, label = data
with torch.no_grad():
img = Variable(img)
# volatile确定你是否调用.backward(),
# 测试中不需要label=Variable(label,volatile=True)
#不需要梯度更新改为with torch.no_grad()
out = model(img)
loss = criterion(out, label) # 计算loss
eval_loss += loss.item() * label.size(0) # total loss
_, pred = torch.max(out, 1) # 预测结果
num_correct = (pred == label).sum() # 正确结果
eval_acc += num_correct.item() # 正确结果总数
print(‘Test loss:{:.6f},Acc:{:.6f}‘.format(eval_loss / (len(test_dataset)), eval_acc * 1.0 / (len(test_dataset))))
MNIST数据集上卷积神经网络的简单实现(使用PyTorch)
标签:配置 集中 forward form 连接 测试 ack 打印 batch
原文地址:https://www.cnblogs.com/candyRen/p/12073017.html