标签:matlab 并行运算 parallel job distributed job
clear all;
% 寻找资源。
jm = findResource('scheduler', 'type', 'jobmanager', 'name', 'mu01', 'LookupURL', '192.168.100.100');
% 使用刚才找到的资源建立一个distributed job
job = createJob(jm);
% 设置该工作的文件关联,让所有workers都可以找到原程序文件,需要在Client上设置共享文件夹。
set(job, 'PathDependencies', {'\\192.168.0.101\matlab_code\', '/mnt/'})
% 另一种方法,把用到的原程序文件传给所有workers。
% set(job, 'FileDependencies', {'hm.m'});
N = 5;
M = 4;
% 建立4个任务,每任务都是算hp(M, N)。
createTask(job, @hp, 1, {{M, N}, {M, N}, {M, N}, {M, N}});
% 提交工作给jobmanager。
submit(job)
% 等待所有workers都把任务做完。
waitForState(job, 'finished')
% 取出计算结果。
results = getAllOutputArguments(job);
% 销毁Job,释放资源
destroy(job);标签:matlab 并行运算 parallel job distributed job
原文地址:http://blog.csdn.net/until_v/article/details/40889369