标签:文件路径 import 标准 model imp OLE use bfc standard
Java 类名:com.alibaba.alink.operator.batch.dataproc.StandardScalerTrainBatchOp
Python 类名:StandardScalerTrainBatchOp
标准化是对数据进行按正态化处理的组件
训练过程计算数据的均值和标准差,在预测组件中使用模型结果
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 默认值 | 
| selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ? | |
| withMean | 是否使用均值 | 是否使用均值,默认使用 | Boolean | true | |
| withStd | 是否使用标准差 | 是否使用标准差,默认使用 | Boolean | true | 
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 10.0, 100], ["b", -2.5, 9], ["c", 100.2, 1], ["d", -99.9, 100], ["a", 1.4, 1], ["b", -2.2, 9], ["c", 100.9, 1] ]) colnames = ["col1", "col2", "col3"] selectedColNames = ["col2", "col3"] inOp = BatchOperator.fromDataframe(df, schemaStr=‘col1 string, col2 double, col3 long‘) # train trainOp = StandardScalerTrainBatchOp() .setSelectedCols(selectedColNames) trainOp.linkFrom(inOp) # batch predict predictOp = StandardScalerPredictBatchOp() predictOp.linkFrom(trainOp, inOp).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.StandardScalerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.StandardScalerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class StandardScalerTrainBatchOpTest { @Test public void testStandardScalerTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 10.0, 100), Row.of("b", -2.5, 9), Row.of("c", 100.2, 1), Row.of("d", -99.9, 100), Row.of("a", 1.4, 1), Row.of("b", -2.2, 9), Row.of("c", 100.9, 1) ); String[] selectedColNames = new String[] {"col2", "col3"}; BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int"); BatchOperator <?> trainOp = new StandardScalerTrainBatchOp() .setSelectedCols(selectedColNames); trainOp.linkFrom(inOp); BatchOperator <?> predictOp = new StandardScalerPredictBatchOp(); predictOp.linkFrom(trainOp, inOp).print(); } }
| col1 | col2 | col3 | 
| a | -0.0784 | 1.4596 | 
| b | -0.2592 | -0.4814 | 
| c | 1.2270 | -0.6521 | 
| d | -1.6687 | 1.4596 | 
| a | -0.2028 | -0.6521 | 
| b | -0.2549 | -0.4814 | 
| c | 1.2371 | -0.6521 | 
Java 类名:com.alibaba.alink.operator.batch.dataproc.StandardScalerPredictBatchOp
Python 类名:StandardScalerPredictBatchOp
标准化是对数据进行按正态化处理的组件
使用标准化训练组件训练的模型,对数据做标准化处理
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 默认值 | 
| outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | |
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | |
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | |
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null | 
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 10.0, 100], ["b", -2.5, 9], ["c", 100.2, 1], ["d", -99.9, 100], ["a", 1.4, 1], ["b", -2.2, 9], ["c", 100.9, 1] ]) colnames = ["col1", "col2", "col3"] selectedColNames = ["col2", "col3"] inOp = BatchOperator.fromDataframe(df, schemaStr=‘col1 string, col2 double, col3 long‘) # train trainOp = StandardScalerTrainBatchOp() .setSelectedCols(selectedColNames) trainOp.linkFrom(inOp) # batch predict predictOp = StandardScalerPredictBatchOp() predictOp.linkFrom(trainOp, inOp).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.StandardScalerPredictBatchOp; import com.alibaba.alink.operator.batch.dataproc.StandardScalerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class StandardScalerPredictBatchOpTest { @Test public void testStandardScalerPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 10.0, 100), Row.of("b", -2.5, 9), Row.of("c", 100.2, 1), Row.of("d", -99.9, 100), Row.of("a", 1.4, 1), Row.of("b", -2.2, 9), Row.of("c", 100.9, 1) ); String[] selectedColNames = new String[] {"col2", "col3"}; BatchOperator <?> inOp = new MemSourceBatchOp(df, "col1 string, col2 double, col3 int"); BatchOperator <?> trainOp = new StandardScalerTrainBatchOp() .setSelectedCols(selectedColNames); trainOp.linkFrom(inOp); BatchOperator <?> predictOp = new StandardScalerPredictBatchOp(); predictOp.linkFrom(trainOp, inOp).print(); } }
| col1 | col2 | col3 | 
| a | -0.0784 | 1.4596 | 
| b | -0.2592 | -0.4814 | 
| c | 1.2270 | -0.6521 | 
| d | -1.6687 | 1.4596 | 
| a | -0.2028 | -0.6521 | 
| b | -0.2549 | -0.4814 | 
| c | 1.2371 | -0.6521 | 
ALINK(二十):数据处理(六)数值型数据处理(二)标准化 (StandardScalerPredictBatchOp/StandardScalerTrainBatchOp )
标签:文件路径 import 标准 model imp OLE use bfc standard
原文地址:https://www.cnblogs.com/qiu-hua/p/14897433.html