标签:机器学习 machine learning kaggle
题目链接:https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
越来越喜欢iPython notebook了。以下所有工作都可以在一个页面上完成,FireFox支持比Chrome要好。
数据集分为train.tsv和test.tsv。字段以\t分隔,每一行有四个字段:PhraseId,SentenceId,Phrase,Sentiment。
情感标识:
0 - negative
1 - somewhat negative
2 - neutral
3 - somewhat positive
4 - positive
import pandas as pd
df = pd.read_csv('train.tsv',header=0,delimiter='\t')
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 156060 entries, 0 to 156059
Data columns (total 4 columns):
PhraseId 156060 non-null int64
SentenceId 156060 non-null int64
Phrase 156060 non-null object
Sentiment 156060 non-null int64
dtypes: int64(3), object(1)
df.head()
In [13]: df.Sentiment.value_counts()/df.Sentiment.count() Out[13]: 2 0.509945 3 0.210989 1 0.174760 4 0.058990 0 0.045316 dtype: float64直接用训练集的前5行做分类准确性测试:
X_train = df['Phrase']
y_train = df['Sentiment']
import numpy as np
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
text_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', LogisticRegression()),
])
text_clf = text_clf.fit(X_train,y_train)
X_test = df.head()['Phrase']
predicted = text_clf.predict(X_test)
print np.mean(predicted == df.head()['Sentiment'])
for phrase, sentiment in zip(X_test, predicted):
print('%r => %s' % (phrase, sentiment))分类准确率及结果:
0.8 'A series of escapades demonstrating the adage that what is good for the goose is also good for the gander , some of which occasionally amuses but none of which amounts to much of a story .' => 3 'A series of escapades demonstrating the adage that what is good for the goose' => 2 'A series' => 2 'A' => 2 'series' => 2
df.head()['Sentiment'] 0 1 1 2 2 2 3 2 4 2第一个分类错误。
test_df = pd.read_csv('test.tsv',header=0,delimiter='\t')
test_df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 66292 entries, 0 to 66291
Data columns (total 3 columns):
PhraseId 66292 non-null int64
SentenceId 66292 non-null int64
Phrase 66292 non-null object
dtypes: int64(2), object(1)用训练好的模型对测试数据集进行分类:
from numpy import savetxt
X_test = test_df['Phrase']
phraseIds = test_df['PhraseId']
predicted = text_clf.predict(X_test)
pred = [[index+156061,x] for index,x in enumerate(predicted)]
savetxt('../Submissions/lr_benchmark.csv',pred,delimiter=',',fmt='%d,%d',header='PhraseId,Sentiment',comments='')提交结果:参考:http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
Kaggle竞赛题之——Sentiment Analysis on Movie Reviews
标签:机器学习 machine learning kaggle
原文地址:http://blog.csdn.net/laozhaokun/article/details/42807241