| x | 8.1 | 8.3 | 8.6 | 8.7 |
| f(x) | 16.94410 | 17.56492 | 18.50515 | 18.82091 |
#include<iostream>
#include<vector>
using namespace std;
//-----------------拉格朗日插值法BEGIN---------------------//
double Lagrange(vector<double> x,vector<double> y ,double X)//x,y分别为x和f(x)的值,X为要求的点,返回值为f(X)
{
double result=0;
double temp=1;
for(int i=0;i<x.size();i++)
{
temp=1;
for(int j=0;j<x.size();j++)
{
if(j!=i)
{
temp=temp*(X-x.at(j))/(x.at(i)-x.at(j));
}
}
result+=temp*y.at(i);
}
return result;
}
//-----------------拉格朗日插值法END---------------------//
//-----------------牛顿法BEGIN---------------------//
double DifferenceQuotient(vector<double> x,vector<double> y ,int k)//计算差商
{
double result=0;
for(int i=0;i<=k;i++)
{
double temp=1;
for(int j=0;j<=k;j++)
{
if(i!=j)
{
temp=temp/(x.at(i)-x.at(j));
}
}
temp=y.at(i)*temp;
result+=temp;
}
return result;
}
double Newton(vector<double> x,vector<double> y ,double X)
{
double result=y.at(0);
double temp=1;
for(int i=1;i<x.size();i++)
{
temp=1;
for(int j=0;j<i;j++)
{
temp*=(X-x.at(j));
}
result+=DifferenceQuotient(x,y,i)*temp;
}
return result;
}
//-----------------牛顿法END---------------------//
void main()
{
vector<double> x;
vector<double> y;
//这里输入x的值,这里使用向量vector是为了方便添加数据点,可以根据实际的观测点更改
x.push_back(8.1);
x.push_back(8.3);
x.push_back(8.6);
x.push_back(8.7);
//这里输入f(x)的值
y.push_back(16.94410);
y.push_back(17.56492);
y.push_back(18.50515);
y.push_back(18.82091);
cout.precision(10);//设置显示精度
//下面是根据上面的4个样本点及其函数值来分别使用两种插值法计算在x=8.4处的函数值
cout<<"使用拉格朗日插值法:";
cout<<Lagrange(x,y,8.4)<<endl;
cout<<"使用牛顿插值法:";
cout<<Newton(x,y,8.4)<<endl;
}程序运行结果如下:function f = Language(x,y,x0)
%x y为坐标向量 x0为插值点的x坐标|| f0为x0对应的值
syms t;
if(length(x) == length(y))
n = length(x);
else
disp('x和y的维数不相等!');
return;
end %检错
f = 0.0;
for(i = 1:n)
l = y(i);
for(j = 1:i-1)
l = l*(t-x(j))/(x(i)-x(j));
end;
for(j = i+1:n)
l = l*(t-x(j))/(x(i)-x(j)); %计算拉格朗日基函数
end;
f = f + l; %计算拉格朗日插值函数
simplify(f); %化简
if(i==n)
if(nargin == 3)
f = subs(f,'t',x0); %计算插值点的函数值
else
f = collect(f); %将插值多项式展开
f = vpa(f,6); %将插值多项式的系数化成6位精度的小数
end
end
endfunction f = Newton(x,y,x0)
%x y为坐标向量 x0为插值点的x坐标|| f0为x0对应的值
syms t;
if(length(x) == length(y))
n = length(x);
c(1:n) = 0.0;
else
disp('x和y的维数不相等!');
return;
end
f = y(1);
y1 = 0;
l = 1;
for(i=1:n-1)
for(j=i+1:n)
y1(j) = (y(j)-y(i))/(x(j)-x(i));
end
c(i) = y1(i+1);
l = l*(t-x(i));
f = f + c(i)*l;
simplify(f);
y = y1;
if(i==n-1)
if(nargin == 3)
f = subs(f,'t',x0);
else
f = collect(f); %将插值多项式展开
f = vpa(f, 6);
end
end
endclear all
clc
format long
format compact
x=[8.1 8.3 8.6 8.7 ];
y=[ 16.94410 17.56492 18.50515 18.82091];
x0=8.4;
disp('拉格朗日插值法:')
disp(Language(x,y,x0))
disp('牛顿插值法:')
disp(Newton(x,y,x0))
原文地址:http://blog.csdn.net/tengweitw/article/details/43025225