标签:
Find the contiguous subarray within an array (containing at least onenumber) which has the largest sum.
For example, given the array [?2,1,?3,4,?1,2,1,?5,4],
the contiguous subarray [4,?1,2,1] has thelargest sum = 6.
HideTags
Divide and Conquer Array Dynamic Programming
#include<iostream>
using namespace std;
//取大值
int max(int a, int b, int c)
{
if (a > b)
if (a > c)
return a;
else
return c;
else if (c > b)
return c;
return b;
}
//flag=1,返回与A同尾的子数组的最大值,flag=0,返回与A同头的子数组的最大值
int maxSideArray(int *A, int n, int flag)
{
if (flag)//返回与A同尾的子数组的最大值
{
int sum = 0;
int maxsum = A[n - 1];
for (int i = n - 1; i >= 0; i--)
{
sum += A[i];
if (sum > maxsum)
maxsum = sum;
}
return maxsum;
}
else//返回与A同头的子数组的最大值
{
int sum = 0;
int maxsum = A[0];
for (int i = 0; i < n; i++)
{
sum += A[i];
if (sum > maxsum)
maxsum = sum;
}
return maxsum;
}
}
//法2:分而治之
int maxSubArray2(int A[], int n)
{
if (n == 1)
return *A;
//左半部分最大值,有半部分最大值,跨过中线的最大值:三个值取最大
return max(maxSubArray2(A, n / 2), maxSubArray2(A + n / 2, n - n / 2), maxSideArray(A, n / 2, 1) + maxSideArray(A + n / 2, n - n / 2, 0));
}
//法1:线性扫描
int maxSubArray(int A[], int n)
{
int sum = 0;
int maxsum = A[0];
for (int i = 0; i < n; i++)
{
sum += A[i];
if (sum > maxsum)
maxsum = sum;
if (sum < 0)
sum = 0;
}
return maxsum;
}
void main()
{
int A[] = { 1, -8, 6, 3, -1, 5, 7, -2, 0, 1 };
int B[] = { -2, 1 };
cout << maxSubArray(A, 10) << endl;
cout << maxSubArray(B, 2) << endl;
cout << maxSubArray2(A, 10) << endl;
cout << maxSubArray2(B, 2) << endl;
system("pause");
}
53.Maximum Subarray(法1线性扫面法2分治法)
标签:
原文地址:http://blog.csdn.net/hgqqtql/article/details/43415633