标签:
在ShaderDesigner下编Shader是最为方便的,但这里先用OpenGL下的编程来举例
转载请注明http://blog.csdn.net/boksic 如有疑问欢迎留言
这几个Shader的实际效果:
1.最简单的固定单色Shader
Vertex Shader
坐标经过投影矩阵变换:vTrans = projection * modelview * incomingVertex
void main()
{
	gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix * gl_Vertex;
}或者更简单的方式,使用ftransform函数void main()
{
	gl_Position = ftransform();
}Fragment Shader
赋予像素一个固定值的颜色
void main()
{
	gl_FragColor = vec4(0.4,0.4,0.8,1.0);
}2.颜色Shader
在OpenGL程序当中使用 glColor函数指定颜色时,接收该颜色值的Shader
例如OpenGL程序当中画一个红色茶壶:    glColor3f(1, 0, 0);
    glutSolidTeapot(1);
glColor在Shader当中总共涉及四个值
attribute vec4 gl_Color; varying vec4 gl_FrontColor; // writable on the vertex shader varying vec4 gl_BackColor; // writable on the vertex shader varying vec4 gl_Color; // readable on the fragment shader
流程如下:
OpenGL程序使用glColor函数后,将颜色值以attribute gl_Color的形式传给了Vertex Shader, Vertext Shader接受到后开始计算gl_FontColor和gl_BackColor,而在Fragment Shader则会接受到一个由FontColor和BackColor插值计算出来的varying gl_Color(注意:该gl_Color与Vertex Shader当中的不同),因而可以基于gl_Color开始计算gl_FragColor
Vertex Shader
void main()
{
	gl_FrontColor = gl_Color;
	gl_Position = ftransform();
}void main()
{
	gl_FragColor = gl_Color;
}
3.动态变形Shader
随着时间变动,改变渲染坐标。关键在于如何把OpenGl的变量传递给Shader
比如在OpenGL中设定一个时间变量time,初始化为0,每次渲染时增加0.1:
float t = 0;
void renderScene(void) {
...
	t += 0.001;
}那么将其传递给Shader需要做的是:
1.在初始化阶段使用glGetUniformLocation获取Shader里变量的存取位置
2.在渲染阶段使用glUniform给该存取位置变量赋值
GLint loc;
float t = 0;
void renderScene(void) {
...
    glUniform1f(loc, t);
    t += 0.001;
}
void setShaders() {
...
 glUseProgram(p);
    loc = glGetUniformLocation(p, "time");
}Vertex Shader
uniform float time;
void main()
{
 	gl_FrontColor = gl_Color; 
	vec4 v = vec4(gl_Vertex);
        v.y=v.y*cos(time)+v.y*sin(time);
        v.z=-v.y*sin(time)+cos(time)*v.z;
	gl_Position = gl_ModelViewProjectionMatrix * v;
}
Fragment Shader
void main()
{
	gl_FragColor = gl_Color;
}
4.Lambert Shader
Lambert模型下的Shader,只考虑漫反射,反射强度正比于入射光与法线方向的夹角余弦值:Io= Ld*Md*cosθ
Ld是散射光颜色(gl_LightSource[0].diffuse),Md是材质散射系数(gl_FrontMaterial.diffuse),夹角余弦cosθ可由正规化的法线向量(normal)和入射光向量(lightDir)点乘得到。
OpenGL当中可以对材质和光照的属性进行设置
float lpos[4] = { 1, 0.5, 1, 0 };
float lAmb[4] = { 0.2, 0.5, 1.0, 1 };
float lDif[4] = { 0.2, 1.0, 1.0, 1 };
float lSpe[4] = { 1.0, 1.0, 1.0, 1 }; 
	glLightfv(GL_LIGHT0, GL_POSITION, lpos);
	glLightfv(GL_LIGHT0, GL_AMBIENT, lAmb);
	glLightfv(GL_LIGHT0, GL_DIFFUSE, lDif);
	glLightfv(GL_LIGHT0, GL_SPECULAR, lSpe);
    GLfloat ambient  [] = { 0.1f, 0.1f, 0.1f, 1.0f};
    GLfloat diffuse  [] = { 1.0f, 0.0f, 0.0f, 1.0f};
    GLfloat specular [] = { 1.0f, 1.0f, 1.0f, 1.0f};
    GLfloat shininess[] = { 0.0f};
    glMaterialfv(GL_FRONT, GL_AMBIENT, ambient);
    glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse);
    glMaterialfv(GL_FRONT, GL_SPECULAR, specular);
    glMaterialfv(GL_FRONT, GL_SHININESS, shininess);Vertex Shader
void main() {
    vec3 normal, lightDir;
    vec4 diffuse;
    float NdotL;
    /* 法线向量 */
    normal = normalize(gl_NormalMatrix * gl_Normal);
    /* 入射光向量*/
    lightDir = normalize(vec3(gl_LightSource[0].position));   /* cosθ */
NdotL = max(dot(normal, lightDir), 0.0);/* 散射项 */
diffuse = gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;
  gl_FrontColor = NdotL * diffuse;gl_Position = ftransform();
}Fragment Shader
void main()
{
	gl_FragColor = gl_Color;
}如果再考虑上环境散射项,那么OpenGL中使用glLightfv来设定环境光
float lpos[4] = { 1, 0.5, 1, 0 };
float lAmb[4] = { 0.2, 0.5, 1, 1 };
void renderScene(void) {
...
	glLightfv(GL_LIGHT0, GL_POSITION, lpos);
	glLightfv(GL_LIGHT0, GL_AMBIENT, lAmb);
...
}Vertex Shader
void main()
{
	vec3 normal, lightDir;
	vec4 diffuse, ambient, globalAmbient;
	float NdotL;
	normal = normalize(gl_NormalMatrix * gl_Normal);
	lightDir = normalize(vec3(gl_LightSource[0].position));
	NdotL = max(dot(normal, lightDir), 0.0);
	diffuse = gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;
	/* Compute the ambient and globalAmbient terms */
	ambient = gl_FrontMaterial.ambient * gl_LightSource[0].ambient;
	globalAmbient = gl_LightModel.ambient * gl_FrontMaterial.ambient;
	gl_FrontColor =  NdotL * diffuse + globalAmbient + ambient;
	gl_Position = ftransform();
}5.Blinn-Phong Shader
void main()
{
    vec3 normal, lightDir;
    vec4 diffuse, ambient, globalAmbient,specular;
    float NdotL;float NdotHV;
    normal = normalize(gl_NormalMatrix * gl_Normal);
    lightDir = normalize(vec3(gl_LightSource[0].position));
    NdotL = max(dot(normal, lightDir), 0.0);
    diffuse = gl_FrontMaterial.diffuse * gl_LightSource[0].diffuse;
    /* Compute the ambient and globalAmbient terms */
    ambient = gl_FrontMaterial.ambient * gl_LightSource[0].ambient;
    globalAmbient = gl_LightModel.ambient * gl_FrontMaterial.ambient;
    
        /* compute the specular term if NdotL is  larger than zero */
    if (NdotL > 0.0) {
        // normalize the half-vector, and then compute the
        // cosine (dot product) with the normal
        NdotHV = max(dot(normal, gl_LightSource[0].halfVector.xyz),0.0);
        specular = gl_FrontMaterial.specular * gl_LightSource[0].specular *
                pow(NdotHV,gl_FrontMaterial.shininess);
    }
    
    
    gl_FrontColor =  NdotL * diffuse + globalAmbient + ambient +specular;
    gl_Position = ftransform();
}将法线方向映射到颜色空间中,可用于生成法线贴图
void main()
{
	vec3 normal;
	normal = normalize(gl_NormalMatrix * gl_Normal);
	gl_FrontColor =  (vec4(normal.x,normal.y,normal.z,1.0)+1)/2;
	gl_Position = ftransform();
}标签:
原文地址:http://blog.csdn.net/boksic/article/details/43834111