A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (< 105) and D (1 < D <= 10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line "Yes" if N is a reversible prime with radix D, or "No" if not.
Sample Input:#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
bool isPrime(int x) {
if(x < 2) {
return false;
}
if(x == 2 || x == 3) {
return true;
}
for(int i=2; i*i<=x; i++) {
if(x % i == 0) {
return false;
}
}
return true;
}
int main() {
int n, d;
while(cin>>n) {
if(n < 0) {
break;
} else {
cin>>d;
if(isPrime(n)) {
queue<int> q;
while(n!=0) {
q.push(n%d);
n /= d;
}
int reverse = 0;
while(!q.empty()) {
reverse=reverse*d;
reverse=reverse+q.front();
q.pop();
}
if(isPrime(reverse)) {
cout<<"Yes"<<endl;
} else {
cout<<"No"<<endl;
}
} else {
cout<<"No"<<endl;
}
}
}
return 0;
}
原文地址:http://blog.csdn.net/jason_wang1989/article/details/43939871