有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1]。问安排怎样的合并顺序,能够使得总合并代价达到最小。
第一行一个整数n(n<=100)
第二行n个整数w1,w2...wn (wi <= 100)
一个整数表示最小合并代价
4
4 1 1 4
18
#include<stdio.h>
#include<algorithm>
using namespace std;
int a[105];
int sum[105];
int d[105][105];
const int INF = (1 << 30);
int main(){
int n, i;
scanf("%d", &n);
for (i = 1; i <= n; i++){
scanf("%d", &a[i]);
sum[i] = sum[i - 1] + a[i];
}
int len, j, k;
for (len = 1; len < n; len++){
for (i = 1; i <= n - len; i++){
int res = INF;
j = i + len;
for (k = i; k < j; k++)
res = min(res, d[i][k] + d[k + 1][j] + sum[j] - sum[i - 1]);
d[i][j] = res;
}
}
printf("%d\n", d[1][n]);
return 0;
}#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[110];
int sum[110];
int dp[110][110];
const int INF = (1 << 30);
int solve(int l, int r)
{
if (dp[l][r] != -1)
return dp[l][r];
int res = INF;
for (int i = l; i <= r - 1; i++)
res = min(res, solve(l, i) + solve(i + 1, r) + sum[r] - sum[l - 1]);
return dp[l][r] = res;
}
int main()
{
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
sum[i] = sum[i - 1] + a[i];
}
memset(dp, -1, sizeof(dp));
for (int i = 1; i <= n; i++) //注意要初始化为0
dp[i][i] = 0;
printf("%d\n", solve(1, n));
return 0;
}
原文地址:http://blog.csdn.net/u013174702/article/details/43985083