标签:
vlfeat-0.9.20\bin\win32加到系统的Path路径中,以便在命令行用sift命令pip install pysqlitepip isntall matplotlibpip install cherrypyStep1.py# -*- coding:utf-8 -*-
# Step1.py:提取图片的特征点并生成单词文件vocabulary.pkl
import pickle
import vocabulary
import imtools
import sift
# imlist是图片名字的列表,图片放在static文件夹下
imlist = imtools.get_imlist(‘static/‘)
# 图片的总数
nbr_images = len(imlist)
# 将每张图片的特征点存放进对应的.sift特征文件中
featlist = [ imlist[i][:-3]+‘sift‘ for i in range(nbr_images)]
for i in range(nbr_images):
        sift.process_image(imlist[i], featlist[i])
# 利用k-means对图片特征文件聚类训练出对应的单词
# 时间关系,这里只用了46张图做例子,所以只创建46个单词
voc = vocabulary.Vocabulary(‘imagewords‘)
voc.train(featlist, 46, 10)
# 将单词都保存到vocabulary.pkl中
with open(‘vocabulary.pkl‘, ‘wb‘) as f:
    pickle.dump(voc,f)
# 打印出单词总数量
print ‘vocabulary is:‘, voc.name, voc.nbr_words
Step2.py# -*- coding:utf-8 -*-
# Step2.py:根据单词文件,将图片单词入sqlite数据库
import pickle
import sift
import imagesearch
import imtools
# 图片名字的列表
imlist = imlist = imtools.get_imlist(‘static/‘)
# 图片的数量
nbr_images = len(imlist)
# 对应图片特征文件的列表
featlist = [ imlist[i][:-3]+‘sift‘ for i in range(nbr_images)]
# 载入单词文件
# 将单词,图片名,地址存进数据库images.db
with open(‘vocabulary.pkl‘, ‘rb‘)as f:
    voc = pickle.load(f)
indx = imagesearch.Indexer(‘images.db‘, voc)
indx.create_tables()
for i in range(nbr_images):
    locs,descr = sift.read_features_from_file(featlist[i])
    indx.add_to_index(imlist[i],descr)
# 将命令提交执行
indx.db_commit()
Step3.py127.0.0.1:8080# -*- coding:utf-8 -*-
# Step3.py:用cherryPy做交互界面,显示结果
import cherrypy, os, urllib, pickle
import imtools
from numpy import *
import imagesearch
# cherryPy页面
# 网页根目录在配置文件service.conf中设置
# 默认端口是8080
class SearchImage:
    def __init__(self):
        # 加载图片名字列表
        self.imlist = imtools.get_imlist(‘static/‘)
        self.nbr_images = len(self.imlist)
        self.ndx = range(self.nbr_images)
        # 加载生成好的单词文件
        f = open(‘vocabulary.pkl‘, ‘rb‘)
        self.voc = pickle.load(f)
        f.close()
        # 设置开始显示的图片数目
        self.maxres = 15
        # 设置页面的结构
        self.header = """
            <!doctype html>
            <head>
            <title>Image search example</title>
            </head>
            <body>
            """
        self.footer = """
            </body>
            </html>
            """
    # 响应index页面
    # 没有搜索的时候随机显示图片
    # 搜索的时候显示与该图片相似的图片,根据视觉单词
    def index(self,query=None):
        self.src = imagesearch.Searcher(‘images.db‘, self.voc)
        html = self.header
        html += """
            <br />
            Click an image to search. <a href=‘?query=‘> Random selection </a> of images.
            <br /><br />
            """
        if query:
            # 显示查询结果的图片
            res = self.src.query(query)[:self.maxres]
            for dist,ndx in res:
                imname = self.src.get_filename(ndx)
                html += "<a href=‘?query="+imname+"‘>"
                html += "<img src=‘"+imname+"‘ width=‘100‘ />"
                html += "</a>"
        else:
            # 随机显示图片
            random.shuffle(self.ndx)
            for i in self.ndx[:self.maxres]:
                imname = self.imlist[i]
                html += "<a href=‘?query="+imname+"‘>"
                html += "<img src=‘"+imname+"‘ width=‘100‘ />"
                html += "</a>"
        html += self.footer
        return html
    index.exposed = True
# 启动应用
cherrypy.quickstart(SearchImage(), ‘/‘, os.path.join(os.path.dirname(__file__), ‘service.conf‘))
不搜索时: 
点击搜索时: 
标签:
原文地址:http://blog.csdn.net/ns2250225/article/details/44102181