标签:编程 scala functional programmi
Monoid是数学范畴理论(category theory)中的一个特殊范畴(category)。不过我并没有打算花时间从范畴理论的角度去介绍Monoid,而是希望从一个程序员的角度去分析Monoid以及它在泛函编程里的作用。从这个思路出发我们很自然得出Monoid就是一种数据类型,或者是一种在泛函编程过程中经常会遇到的数据类型:当我们针对List或者loop进行一个数值的积累操作时我们就会使用到Monoid。实际上Monoid就是List[A] => A的抽象模型。好了,我们就不要越描越黑了吧,还是看看Monoid的定义吧:
Monoid由以下条件组成:
1、一个抽象类型A
2、一个二元结合性函数(binary associative function),对传入的两个A类参数进行操作后产生一个A类型结果
3、一个恒等值(identity)
由于Monoid是一个数学类型,它的二元操作函数必须遵循一些定律:
1、结合性(associativity):op(a,op(b,c)) = op(op(a,b),c):这个定律是函数组合(function composition)不可缺的条件
2、二元函数参数中如果有一个是恒等值时操作结果为另一个参数:op(identity,v) = v
我们可以用编程语言来描述Monoid:
trait Monoid[A] { //被封装的类型A
def op(a1: A, a2: A): A //二元函数
val zero: A //恒等值identity
}
既然Monoid trait是个抽象类型,那么我们可以试着创建几个基础类型的Monoid实例:
val stringConcatMonoid = new Monoid[String] {
def op(s1: String, s2: String) = s1 + s2
val zero = "" // op(zero,s2) = "" + s2 = s2 恒等值定律
} //> stringConcatMonoid : ch10.ex1.Monoid[String] = ch10.ex1$$anonfun$main$1$$an
//| on$1@3581c5f3
val intAdditionMonoid = new Monoid[Int] {
def op(i1: Int, i2: Int) = i1 + i2
val zero = 0
} //> intAdditionMonoid : ch10.ex1.Monoid[Int] = ch10.ex1$$anonfun$main$1$$anon$4
//| @340f438e
val intMultiplicationMonoid = new Monoid[Int] {
def op(i1: Int, i2: Int) = i1 * i2
val zero = 1
} //> intMultiplicationMonoid : ch10.ex1.Monoid[Int] = ch10.ex1$$anonfun$main$1$$
//| anon$5@30c7da1e
def reduce[A](as: List[A])(m: Monoid[A]): A = {
as match {
case Nil => m.zero
case h::t => m.op(h, reduce(t)(m))
}
} //> reduce: [A](as: List[A])(m: ch10.ex1.Monoid[A])A
reduce(List(1,2,3))(intAdditionMonoid) //> res3: Int = 6
reduce(List("this is ","the string", " monoid"))(stringConcatMonoid)
//> res4: String = this is the string monoid
reduce[A](as: List[A])(zero: A)(op: (A,A) => A) : A
def foldRight[A,B](as: List[A])(z: B)(f: (A,B) => B): B 如果类型B=类型A def foldRight[A](as: List[A])(z: A)(f: (A,A) => A): A
List(1,2,3).foldRight(intAdditionMonoid.zero)(intAdditionMonoid.op)
//> res3: Int = 6
List("this is ","the string", " monoid").foldLeft(stringConcatMonoid.zero)(stringConcatMonoid.op)
//> res4: String = this is the string monoid
下面我们再试着增加几个Monoid实例:
def optionMonoid[A] = new Monoid[Option[A]] {
def op(o1: Option[A], o2: Option[A]): Option[A] = o1 orElse o2
val zero = None // op(zero, o1)= None orElse o2 = o2
} //> optionMonoid: [A]=> ch10.ex1.Monoid[Option[A]]{val zero: None.type}
def listConcatMonoid[A] = new Monoid[List[A]] {
def op(l1: List[A], l2: List[A]) = l1 ++ l2
val zero = Nil
} //> listConcatMonoid: [A]=> ch10.ex1.Monoid[List[A]]{val zero: scala.collection.
//| immutable.Nil.type}
val booleanOrMonoid = new Monoid[Boolean] {
def op(b1: Boolean, b2: Boolean) = b1 || b2
val zero = false
} //> booleanOrMonoid : ch10.ex1.Monoid[Boolean] = ch10.ex1$$anonfun$main$1$$anon
//| $6@5b464ce8
val booleanAndMonoid = new Monoid[Boolean] {
def op(b1: Boolean, b2: Boolean) = b1 && b2
val zero = true
} //> booleanAndMonoid : ch10.ex1.Monoid[Boolean] = ch10.ex1$$anonfun$main$1$$an
//| on$7@57829d67
def endoComposeMonoid[A] = new Monoid[A => A] {
def op(f: A => A, g: A => A) = f compose g
val zero = (a: A) => a // op(zero, g: A => A) = zero compose g = g
} //> endoComposeMonoid: [A]=> ch10.ex1.Monoid[A => A]
def endoAndThenMonoid[A] = new Monoid[A => A] {
def op(f: A => A, g: A => A) = f andThen g
val zero = (a: A) => a // op(zero, g: A => A) = zero andThen g = g
} //> endoAndThenMonoid: [A]=> ch10.ex1.Monoid[A => A]
//计算m的镜像Monoid
def dual[A](m: Monoid[A]) = new Monoid[A] {
def op(x: A, y: A) = m.op(y,x) //镜像op即时二元参数位置互换
val zero = m.zero
} //> dual: [A](m: ch10.ex1.Monoid[A])ch10.ex1.Monoid[A]
def firstOfDualOptionMonoid[A] = optionMonoid[A]
//> firstOfDualOptionMonoid: [A]=> ch10.ex1.Monoid[Option[A]]{val zero: None.ty
//| pe}
def secondOfDualOptionMonoid[A] = dual(firstOfDualOptionMonoid[A])
//> secondOfDualOptionMonoid: [A]=> ch10.ex1.Monoid[Option[A]]
还是回到对List[A]的累加操作。下面这个函数用Monoid对List[A]元素A进行累加操作:
def concatenate[A](l: List[A], m: Monoid[A]): A = {
l.foldRight(m.zero){(a,b) => m.op(a,b)}
} //> concatenate: [A](l: List[A], m: ch10.ex1.Monoid[A])A
concatenate[Int](List(1,2,3),intAdditionMonoid) //> res0: Int = 6
那么如果没有List[A]元素A类型Monoid实例怎么办?我们可以加一个函数:
def foldMap[A,B](as: List[A])(m: Monoid[B])(f: A => B): B
def foldMap[A,B](as: List[A])(m: Monoid[B])(f: A => B): B = {
as.foldRight(m.zero)((a,b) => m.op(f(a),b))
}
def foldRight[A,B](la: List[A])(z: B)(f: (A,B) => B): B
def foldLeft[A,B](la: List[A])(z: B)(f: (A,B) => B): B
def foldMap[A,B](as: List[A])(m: Monoid[B])(f: A => B): B
def foldRight[A,B](as: List[A])(z: B)(f: (A,B) => B): B = {
foldMap(as)(endoComposeMonoid[B])(a => b => f(a,b))(z)
}
foldLeft是从左边开始折叠,只需要采用endoComposeMonoid的镜像Monoid把op参数位置调换就行了:
def foldLeft[A,B](as: List[A])(z: B)(f: (A,B) => B): B = {
foldMap(as)(dual(endoComposeMonoid[B]))(a => b => f(a,b))(z)
}
标签:编程 scala functional programmi
原文地址:http://blog.csdn.net/tiger_xc/article/details/45153073