码迷,mamicode.com
首页 > 其他好文 > 详细

[裴礼文数学分析中的典型问题与方法习题参考解答]4.5.13

时间:2015-05-11 23:23:09      阅读:157      评论:0      收藏:0      [点我收藏+]

标签:

设 $f(x)$ 于任一有限区间 $[0,a]\ (a>0)$ 上正常可积, 于 $[0,\infty)$ 上绝对可积, 则 $$\bex \vlm{n}\int_0^\infty f(x)|\sin nx|\rd x =\frac{2}{\pi}\int_0^\infty f(x)\rd x. \eex$$ (南京大学)

 

解答: 在例 4.5.32 中取 $g(x)=|\sin x|$, $x\in [0,\pi]$, 由 $$\bex \frac{1}{\pi}\int_0^\pi |\sin x|\rd x=\frac{2}{\pi} \eex$$ 即知结论. 另外, 还可以由例 5.4.18 (Fourier 级数的办法) 来证明.

 

[裴礼文数学分析中的典型问题与方法习题参考解答]4.5.13

标签:

原文地址:http://www.cnblogs.com/zhangzujin/p/4495762.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!