标签:
//EK模板
#include <iostream> #include <queue> #include<string.h> #include <cstdio> #define ll long long using namespace std; #define arraysize 1005 int maxData = 0x7fffffff; int capacity[arraysize][arraysize]; //记录残留网络的容量 int flow[arraysize]; //标记从源点到当前节点实际还剩多少流量可用 int pre[arraysize]; //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中 int n,m;//n为point m为边 queue<int> myqueue; int BFS(int src,int des) { int i; while(!myqueue.empty()) //队列清空 myqueue.pop(); for(i=1;i<=n;++i) { pre[i]=-1; } pre[src]=0; flow[src]= maxData; myqueue.push(src); while(!myqueue.empty()) { int index = myqueue.front(); myqueue.pop(); if(index == des) //找到了增广路径 break; for(i=1;i<=n;++i) { if(i!=src && capacity[index][i]>0 && pre[i]==-1) { pre[i] = index; //记录前驱 flow[i] = min(capacity[index][i],flow[index]); //关键:迭代的找到增量 myqueue.push(i); } } } if(pre[des]==-1) //残留图中不再存在增广路径 return -1; else return flow[des]; } ll maxFlow(int src,int des) { int increasement= 0; ll sumflow = 0; while((increasement=BFS(src,des))!=-1) { int k = des; //利用前驱寻找路径 while(k!=src) { int last = pre[k]; capacity[last][k] -= increasement; //改变正向边的容量 capacity[k][last] += increasement; //改变反向边的容量 k = last; } sumflow += increasement; } return sumflow; } int main() { int i; int start,end,ci; int T; scanf("%d",&T); for(int kase = 1; kase <= T; kase++) { scanf("%d%d",&n,&m); memset(capacity,0,sizeof(capacity)); memset(flow,0,sizeof(flow)); for(i=0;i<m;++i) { scanf("%d%d%d",&start,&end,&ci); if(start == end) //考虑起点终点相同的情况 continue; capacity[start][end] +=ci; //此处注意可能出现多条同一起点终点的情况 } printf("Case %d: %I64d\n",kase,maxFlow(1,n)); } return 0; }
ISAP
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define clear(A, X) memset (A, X, sizeof A)
#define copy(A, B) memcpy (A, B, sizeof A)
using namespace std;
const int maxE = 1000000;
const int maxN = 100000;
const int maxQ = 1000000;
const int oo = 0x3f3f3f3f;
struct Edge {
int v;//弧尾
int c;//容量
int n;//指向下一条从同一个弧头出发的弧
} edge[maxE];//边组
int adj[maxN], cntE;//前向星的表头
int Q[maxQ], head, tail;//队列
int d[maxN], cur[maxN], pre[maxN], num[maxN];
int sourse, sink, nv;//sourse:源点,sink:汇点,nv:编号修改的上限
int n, m;
void addedge (int u, int v, int c) {//添加边
//正向边
edge[cntE].v = v;
edge[cntE].c = c;//正向弧的容量为c
edge[cntE].n = adj[u];
adj[u] = cntE++;
//反向边
edge[cntE].v = u;
edge[cntE].c = 0;//反向弧的容量为0
edge[cntE].n = adj[v];
adj[v] = cntE++;
}
void rev_bfs () {//反向BFS标号
clear (num, 0);
clear (d, -1);//没标过号则为-1
d[sink] = 0;//汇点默认为标过号
num[0] = 1;
head = tail = 0;
Q[tail++] = sink;
while (head != tail) {
int u = Q[head++];
for (int i = adj[u]; ~i; i = edge[i].n) {
int v = edge[i].v;
if (~d[v]) continue;//已经标过号
d[v] = d[u] + 1;//标号
Q[tail++] = v;
num[d[v]]++;
}
}
}
int ISAP()
{
copy (cur, adj);//复制,当前弧优化
rev_bfs ();//只用标号一次就够了,重标号在ISAP主函数中进行就行了
int flow = 0, u = pre[sourse] = sourse, i;
while (d[sink] < nv)
{//最长也就是一条链,其中最大的标号只会是nv - 1,如果大于等于nv了说明中间已经断层了。
if (u == sink)
{//如果已经找到了一条增广路,则沿着增广路修改流量
int f = oo, neck;
for (i = sourse; i != sink; i = edge[cur[i]].v)
{
if (f > edge[cur[i]].c)
{
f = edge[cur[i]].c;//不断更新需要减少的流量
neck = i;//记录回退点,目的是为了不用再回到起点重新找
}
}
for (i = sourse; i != sink; i = edge[cur[i]].v)
{//修改流量
edge[cur[i]].c -= f;
edge[cur[i] ^ 1].c += f;
}
flow += f;//更新
u = neck;//回退
}
for (i = cur[u]; ~i; i = edge[i].n) if (d[edge[i].v] + 1 == d[u] && edge[i].c) break;
if (~i)
{//如果存在可行增广路,更新
cur[u] = i;//修改当前弧
pre[edge[i].v] = u;
u = edge[i].v;
}
else
{//否则回退,重新找增广路
if (0 == (--num[d[u]])) break;//GAP间隙优化,如果出现断层,可以知道一定不会再有增广路了
int mind = nv;
for (i = adj[u]; ~i; i = edge[i].n)
{
if (edge[i].c && mind > d[edge[i].v])
{//寻找可以增广的最小标号
cur[u] = i;//修改当前弧
mind = d[edge[i].v];
}
}
d[u] = mind + 1;
num[d[u]]++;
u = pre[u];//回退
}
}
return flow;
}
void init () {//初始化
clear (adj, -1);
cntE = 0;
}
void work () {
int u, v, c;
init ();
for (int i = 0; i < m; ++ i) scanf ("%d%d%d", &u, &v, &c), addedge (u, v, c);
sourse = 1; sink = n; nv = sink + 1;
printf ("%d\n", ISAP ());
}
int main() {
while (~scanf("%d%d", &m, &n)) work ();
return 0;
}
Dinic
// UVa11248 Frequency Hopping:使用Dinic算法
// Rujia Liu
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 100 + 10;
const int INF = 1000000000;
struct Edge {
int from, to, cap, flow;
};
bool operator < (const Edge& a, const Edge& b) {
return a.from < b.from || (a.from == b.from && a.to < b.to);
}
struct Dinic {
int n, m, s, t;
vector<Edge> edges; // 边数的两倍
vector<int> G[maxn]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; // BFS使用
int d[maxn]; // 从起点到i的距离
int cur[maxn]; // 当前弧指针
void ClearAll(int n) {
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void ClearFlow() {
for(int i = 0; i < edges.size(); i++) edges[i].flow = 0;
}
void AddEdge(int from, int to, int cap) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS(){
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
vis[s] = 1;
d[s] = 0;
while(!Q.empty()) {
int x = Q.front(); Q.pop();
for(int i = 0; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[x] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x, int a) {
if(x == t || a == 0) return a;
int flow = 0, f;
for(int& i = cur[x]; i < G[x].size(); i++) {
Edge& e = edges[G[x][i]];
if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap-e.flow))) > 0) {
e.flow += f;
edges[G[x][i]^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
}
int Maxflow(int s, int t) {
this->s = s; this->t = t;
int flow = 0;
while(BFS()) {
memset(cur, 0, sizeof(cur));
flow += DFS(s, INF);
}
return flow;
}
vector<int> Mincut() { // call this after maxflow
vector<int> ans;
for(int i = 0; i < edges.size(); i++) {
Edge& e = edges[i];
if(vis[e.from] && !vis[e.to] && e.cap > 0) ans.push_back(i);
}
return ans;
}
void Reduce() {
for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow;
}
};
Dinic g;
int main() {
int n, e, c, kase = 0;
while(scanf("%d%d%d", &n, &e, &c) == 3 && n) {
g.ClearAll(n);
while(e--) {
int b1, b2, fp;
scanf("%d%d%d", &b1, &b2, &fp);
g.AddEdge(b1-1, b2-1, fp);
}
int flow = g.Maxflow(0, n-1);
printf("Case %d: ", ++kase);
if(flow >= c) printf("possible\n");
else {
vector<int> cut = g.Mincut();
g.Reduce();
vector<Edge> ans;
for(int i = 0; i < cut.size(); i++) {
Edge& e = g.edges[cut[i]];
e.cap = c;
g.ClearFlow();
if(flow + g.Maxflow(0, n-1) >= c) ans.push_back(e);
e.cap = 0;
}
if(ans.empty()) printf("not possible\n");
else {
sort(ans.begin(), ans.end());
printf("possible option:(%d,%d)", ans[0].from+1, ans[0].to+1);
for(int i = 1; i < ans.size(); i++)
printf(",(%d,%d)", ans[i].from+1, ans[i].to+1);
printf("\n");
}
}
}
return 0;
}
标签:
原文地址:http://www.cnblogs.com/Lzy2015/p/4530125.html