码迷,mamicode.com
首页 > 其他好文 > 详细

why constrained regression and Regularized regression equivalent

时间:2015-05-29 06:12:52      阅读:154      评论:0      收藏:0      [点我收藏+]

标签:

problem 1:

  $\min_{\beta} ~f_\alpha(\beta):=\frac{1}{2}\Vert y-X\beta\Vert^2 +\alpha\Vert \beta\Vert$

problem 2:

  $\min_{\beta} ~\frac{1}{2}\Vert y-X\beta\Vert^2 \\ s.t.~\Vert \beta\Vert-c\leq 0$

problem 2 Lagrangian:

      $\mathcal{L}(\beta,\lambda)=\frac{1}{2}\Vert y-X\beta\Vert^2+\lambda (\Vert \beta\Vert-c)$

kkt shows:

dual-inner optimal:$\beta^*=min_{\beta}~\mathcal{L}(\beta,\lambda):=\frac{1}{2}\Vert y-X\beta\Vert^2+\lambda (\Vert \beta\Vert-c)$

primal-inner optimal:$\lambda^*(\Vert \beta\Vert-c)=0$

 

for problem 1:

$\beta^*=\min_{\beta} ~f_\alpha(\beta):=\frac{1}{2}\Vert y-X\beta\Vert^2 +\alpha\Vert \beta\Vert$

set $\lambda = \alpha$ and $c=\Vert \beta\Vert$

can see both kkt conditions meet

why constrained regression and Regularized regression equivalent

标签:

原文地址:http://www.cnblogs.com/porco/p/4537507.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!