标签:
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4
5 6 7 0 1 2).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
求旋转数组中是否存在某一个整数,若存在返回该值在数组中的下标,否则返回-1.该数组中无重复数字。
参考Find Minimum in Rotated Sorted Array I http://blog.csdn.net/sinat_24520925/article/details/46438537
我们找到旋转数组中的最小的元素,也就相当于将旋转数组,分成两个递增数组的分界点知道了。我们在这两个有序数组中利用二分法找是否存在target即可,代码如下:
class Solution {
public:
int findMin(vector<int>& nums) {
if(nums.size()==1) return 0;
if(nums.size()==2)
{
return nums[0]>nums[1]?1:0;
}
for(int i=0;i<nums.size()-1;i++)
{
if(nums[i+1]<nums[i])
return i+1;
}
return nums[0];
}
int search(vector<int>& nums, int target) {
if(nums.size()==0) return -1;
int dex=findMin(nums);
if(dex==0)
{
int low=0,high=nums.size()-1;
while(low<=high)
{
int mid=(low+high)/2;
if(nums[mid]>target)
high=mid-1;
else if(nums[mid]<target)
low=mid+1;
else
return mid;
}
}
else if(dex==nums.size()-1)
{
if(nums[dex]==target)
return dex;
int low=0,high=nums.size()-2;
while(low<=high)
{
int mid=(low+high)/2;
if(nums[mid]>target)
high=mid-1;
else if(nums[mid]<target)
low=mid+1;
else
return mid;
}
}
else
{
int low=0,high=dex-1;
while(low<=high)
{
int mid=(low+high)/2;
if(nums[mid]>target)
high=mid-1;
else if(nums[mid]<target)
low=mid+1;
else
return mid;
}
low=dex,high=nums.size()-1;
while(low<=high)
{
int mid=(low+high)/2;
if(nums[mid]>target)
high=mid-1;
else if(nums[mid]<target)
low=mid+1;
else
return mid;
}
}
return -1;
}
};
Follow up for "Search in Rotated Sorted Array":
What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given target is in the array.
求旋转数组中是否存在某一个整数,若存在返回true,否则false.该数组中可以有重复数字。
参考
Find Minimum in Rotated Sorted Array II http://blog.csdn.net/sinat_24520925/article/details/46438537
同Search in Rotated Sorted Array I,相同思路,代码如下:
class Solution {
public:
int findMin(vector<int>& nums) {
if(nums.size()==1) return 0;
if(nums.size()==2) return nums[0]<nums[1]?0:1;
for(int i=0;i<nums.size()-1;i++)
{
if(nums[i+1]<nums[i])
return i+1;
}
return nums.size()-1;
}
bool search(vector<int>& nums, int target) {
if(nums.size()==0) return false;
int dex=findMin(nums);
if(dex==0)
{
int low=0,high=nums.size()-1;
while(low<=high)
{
int mid=(low+high)/2;
if(nums[mid]>target)
high=mid-1;
else if(nums[mid]<target)
low=mid+1;
else
return true;
}
}
else if(dex==nums.size()-1)
{
if(nums[dex]==target)
return true;
int low=0,high=nums.size()-2;
while(low<=high)
{
int mid=(low+high)/2;
if(nums[mid]>target)
high=mid-1;
else if(nums[mid]<target)
low=mid+1;
else
return true;
}
}
else
{
int low=0,high=dex-1;
while(low<=high)
{
int mid=(low+high)/2;
if(nums[mid]>target)
high=mid-1;
else if(nums[mid]<target)
low=mid+1;
else
return true;
}
low=dex,high=nums.size()-1;
while(low<=high)
{
int mid=(low+high)/2;
if(nums[mid]>target)
high=mid-1;
else if(nums[mid]<target)
low=mid+1;
else
return true;
}
}
return false;
}
};
Search in Rotated Sorted Array && Search in Rotated Sorted ArrayII
标签:
原文地址:http://blog.csdn.net/sinat_24520925/article/details/46476217