3 6 aloha 0 arachnid 0 dog 0 gopher 0 tar 1 tiger 0 3 thee 1 earn 0 nothing 0 2 pat 1 acm 0
Case 1: Well done! Case 2: Well done! Case 3: Poor boy!HintIn the first case, the word “tar” is still meaningful when reversed, and love8909 can make a list as “aloha-arachnid-dog-gopher-rat-tiger”. In the second case, the word “thee” is still meaningful when reversed, and love8909 can make a list as “thee-earn-nothing”. In the third case, no lists can be created.
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int
const int MAXN = 100010; //点的总数
const int MAXM = 400010; //边的总数
const int INF = 1<<30;
struct EDG{
int to,next;
captype cap,flow;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可认为是高度)点的个数
int dis[MAXN]; //每个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN];
void init(){
eid=0;
memset(head,-1,sizeof(head));
}
//有向边 三个参数,无向边4个参数
void addEdg(int u,int v,captype c,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; edg[eid].flow=0; head[u]=eid++;
edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0; //最大流
int u=sNode;
while(dis[sNode]<n){ //判断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路
captype Min=INF ;
int inser;
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]) //从这条可增流的路找到最多可增的流量Min
if(Min>edg[i].cap-edg[i].flow){
Min=edg[i].cap-edg[i].flow;
inser=i;
}
for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].flow+=Min;
edg[i^1].flow-=Min; //可回流的边的流量
}
ans+=Min;
u=edg[inser^1].to;
continue;
}
bool flag = false; //判断能否从u点出发可往相邻点流
int v;
for(int i=cur[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap-edg[i].flow>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//如果上面没有找到一个可流的相邻点,则改变出发点u的距离(也可认为是高度)为相邻可流点的最小距离+1
int Mind= n;
for(int i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].cap-edg[i].flow>0 && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans; //当dis[u]这种距离的点没有了,也就不可能从源点出发找到一条增广流路径
//因为汇点到当前点的距离只有一种,那么从源点到汇点必然经过当前点,然而当前点又没能找到可流向的点,那么必然断流
dis[u]=Mind+1;//如果找到一个可流的相邻点,则距离为相邻点距离+1,如果找不到,则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^1].to; //退一条边
}
return ans;
}
int fath[MAXN];
int findfath(int x){
if(x!=fath[x])
fath[x]=findfath(fath[x]);
return fath[x];
}
void linke(int x,int y){
x=findfath(x);
y=findfath(y);
fath[x]=y;
}
int main()
{
int T,_cas=0,n, p ,in[50],out[50];
char s[50];
scanf("%d",&T);
while(T--){
scanf("%d",&n);
init();
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
for(int i=0; i<=26; i++)
fath[i]=i;
int flag = 1 , root =0;
for(int i=0; i<n; i++){
scanf("%s%d",s,&p);
int u=s[0]-'a';
int v=s[strlen(s)-1]-'a';
out[u]++; in[v]++;
root=u;
if(p==1) addEdg(u,v,1); //双向的则建一条容量为1的边
linke(u,v);
}
root=findfath(root);
int cnt=0 , u=-1,v=-1;
for(int i=0; i<26 ; i++)
if(in[i]||out[i]){
if(findfath(i)!=root){
flag=0; break;
}
if((in[i]+out[i])&1){
cnt++;
if(u==-1)
u=i;
else v=i;
}
}
if(cnt!=0&&cnt!=2) flag=0;
if(flag==0){
printf("Case %d: Poor boy!\n",++_cas); continue;
}
if(cnt==2){
out[u]++; in[v]++;
addEdg(u,v,1); //构造成欧拉环,添加的是双向边
}
int s=26 , t = 27;
for(int i=0; i<26; i++){
if(out[i]>in[i])
addEdg(s,i,(out[i]-in[i])/2);
else if(out[i]<in[i])
addEdg(i,t,(in[i]-out[i])/2);
}
maxFlow_sap( s , t , t+1);
for(int i=head[s]; i!=-1; i=edg[i].next)//判断满流
if(edg[i].cap>0 && edg[i].cap>edg[i].flow){
flag=0; break;
}
if(flag) printf("Case %d: Well done!\n",++_cas);
else printf("Case %d: Poor boy!\n",++_cas);
}
}
HDU 3472 HS BDC(混合欧拉图(使用最大流))模板
原文地址:http://blog.csdn.net/u010372095/article/details/46584951