标签:
2 4 2 1 2 2 3 4 4 1 2 1 4 2 3 3 4
2 0
大致题意:
有n个点,m条边的二分图(可能不连通),问最多还能加多少条边变成完全二分图
思路:
显然每一连通块,都染成两种颜色,最后要尽量使两种颜色总数相同解才最优
显然有两种决策,不是染白就是染黑,01背包
dp[i][val]表示前i个连通块能染成同一色点数<=val的最大值
显然dp[scc][all/2]是最优解
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#include <cstdio>
#include <ctime>
#include <bitset>
#include <algorithm>
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define REP(i,n) for ( int i=1; i<=int(n); i++ )
using namespace std;
typedef long long ll;
#define X first
#define Y second
typedef pair<ll,ll> pii;
const int N = 10000+100;
const int M = 100000+1000;
struct Edge{
int v,nxt;
Edge(int v = 0,int nxt = 0):v(v),nxt(nxt){}
}es[M*2];
int n,m;
int ecnt;
int head[N];
inline void add_edge(int u,int v){
es[ecnt] = Edge(v,head[u]);
head[u] = ecnt++;
es[ecnt] = Edge(u,head[v]);
head[v] = ecnt++;
}
int col[N];
int cnt[N][2];
int top;
int sum = 0;
void dfs(int u,int fa){
col[u] = !col[fa];
cnt[top][col[u]]++;
for(int i = head[u];~i;i = es[i].nxt){
int v = es[i].v;
if(v == fa || col[v] != -1) continue;
dfs(v,u);
}
}
void ini(){
REP(i,n) head[i] = col[i] = -1,cnt[i][0] = cnt[i][1] = 0;
col[0] = top = sum = ecnt = 0;
}
int dp[2][N];
int main(){
int T;
cin>>T;
while(T--){
scanf("%d%d",&n,&m);
ini();
REP(i,m){
int u,v;
scanf("%d%d",&u,&v);
add_edge(u,v);
}
for(int i = n; i>= 1;i--){
if(col[i] != -1) continue;
top++;
dfs(i,0);
if(cnt[top][0] == 0 || cnt[top][1] == 0) {
cnt[top][0] = cnt[top][1] = 0;
top--;
}
else {
sum += cnt[top][0],sum += cnt[top][1];
}
}
int nd = n-sum;
for(int i = 0;i <= sum/2;i++) dp[0][i] = 0;
REP(i,top){
for(int j = 0; j <= sum/2; j++){
dp[i&1][j] = -1;
if(j-cnt[i][0] >= 0 && dp[(i-1)&1][j-cnt[i][0]] != -1) dp[i&1][j] = dp[(i-1)&1][j-cnt[i][0]]+cnt[i][0];
if(j-cnt[i][1] >= 0 && dp[(i-1)&1][j-cnt[i][1]] != -1) {
dp[i&1][j] = max(dp[(i-1)&1][j-cnt[i][1]]+cnt[i][1],dp[i&1][j]);
}
}
int minn,maxx = sum-dp[top&1][sum/2];
int t = min(nd,maxx-dp[top&1][sum/2]);
minn = dp[top&1][sum/2]+t;
nd -= t;
if(nd) minn += nd/2, maxx += nd/2 + (nd&1);
printf("%d\n",minn*maxx-m);
}
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
HDU 5313 Bipartite Graph(二分图染色+01背包水过)
标签:
原文地址:http://blog.csdn.net/kalilili/article/details/47066423