标签:
链接 : http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=36866
可以建一个类似二分图,X集合是所有行,Y集合是所有列,X->Y的容量为(1到20)。建立源点连接每个X中的点,容量为该行的和。建立汇点连接Y中的点,容量为该行的列。目的是求从源点出发的流量就是容量,且必须走完所有流量并到达汇点,汇点的流量必须是源点发出的流量。这样控制路径后求出中间过程的流量各式多少。
因为题目规定了每行的和必须等于给定的数,所以从原点出发的必须是满流,到达汇点的流也是满流。由于直接计算会出现有些流量为0的情况不满足大于等于1小于等于20,所以可以一开始处理对整张图的点都减1 最后再加1。
/*--------------------- #headfile--------------------*/
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <set>
#include <map>
/*----------------------#define----------------------*/
#define DRII(X,Y) int (X),(Y);scanf("%d%d",&(X),&(Y))
#define EXP 2.7182818284590452353602874713527
#define CASET int _;cin>>_;while(_--)
#define RII(X, Y) scanf("%d%d",&(X),&(Y))
#define DRI(X) int (X);scanf("%d", &X)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,n) for(int i=0;i<n;i++)
#define ALL(X) (X).begin(),(X).end()
#define INFL 0x3f3f3f3f3f3f3f3fLL
#define RI(X) scanf("%d",&(X))
#define SZ(X) ((int)X.size())
#define PDI pair<double,int>
#define rson o<<1|1,m+1,r
#define PII pair<int,int>
#define MAX 0x3f3f3f3f
#define lson o<<1,l,m
#define MP make_pair
#define PB push_back
#define SE second
#define FI first
typedef long long ll;
template<class T>T MUL(T x,T y,T P){T F1=0;while(y){if(y&1){F1+=x;if(F1<0||F1>=P)F1-=P;}x<<=1;if(x<0||x>=P)x-=P;y>>=1;}return F1;}
template<class T>T POW(T x,T y,T P){T F1=1;x%=P;while(y){if(y&1)F1=MUL(F1,x,P);x=MUL(x,x,P);y>>=1;}return F1;}
template<class T>T gcd(T x,T y){if(y==0)return x;T z;while(z=x%y)x=y,y=z;return y;}
#define DRIII(X,Y,Z) int (X),(Y),(Z);scanf("%d%d%d",&(X),&(Y),&(Z))
#define RIII(X,Y,Z) scanf("%d%d%d",&(X),&(Y),&(Z))
const double pi = acos(-1.0);
const double eps = 1e-6;
const ll mod = 1000000007ll;
const int M = 100005;
const int N = 205;
using namespace std;
/*----------------------Main-------------------------*/
struct Edge {
int to, c, rev;
Edge() {}
Edge(int _to, int _c, int _rev) {
to = _to, c = _c, rev = _rev;
}
};
vector<Edge> G[N];
int lv[N], iter[N];
void add(int from, int to, int c) {
G[from].PB( Edge(to, c, SZ(G[to])) );
G[to].PB( Edge(from, 0, SZ(G[from]) - 1) );
}
void BFS(int s) {
mem(lv, -1);
queue<int> q;
lv[s] = 0;
q.push(s);
while(!q.empty()) {
int v = q.front(); q.pop();
for(int i = 0; i < SZ(G[v]); i++) {
Edge &e = G[v][i];
if(e.c > 0 && lv[e.to] < 0) {
lv[e.to] = lv[v] + 1;
q.push(e.to);
}
}
}
}
int dfs(int v, int t, int f) {
if(v == t) return f;
for(int &i = iter[v]; i < SZ(G[v]); i++) {
Edge &e = G[v][i];
if(e.c > 0 && lv[v] < lv[e.to]) {
int d = dfs(e.to, t, min(f, e.c));
if(d > 0) {
e.c -= d;
G[e.to][e.rev].c += d;
return d;
}
}
}
return 0;
}
int MF(int s, int t) {
int res = 0;
for(;;) {
BFS(s);
if(lv[t] < 0) return res;
mem(iter, 0);
int f;
while((f = dfs(s, t, 1e9)) > 0) {
res += f;
}
}
}
int n, m, FF = 0;
int A[N], B[N], a[N], b[N];
void solve() {
if(FF) puts(""); FF++;
RII(n, m);
for(int i = 0; i <= n + m + 1; i++) G[i].clear();
for(int i = 1; i <= n; i++) {
RI(A[i]);
a[i] = A[i] - A[i-1];
}
for(int i = 1; i <= m; i++) {
RI(B[i]);
b[i] = B[i] - B[i-1];
}
int s = 0, t = n + m + 1;
for(int i = 1; i <= n; i++) {
add(s, i, a[i] - m);
}
for(int i = 1; i <= m; i++) {
add(i + n, t, b[i] - n);
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
add(i, j + n, 19);
}
}
int ans = MF(0, n + m + 1) + n * m;
assert(ans == A[n]);
assert(ans == B[m]);
printf("Matrix %d\n", FF);
for(int i = 1; i <= n; i++) {
for(int j = 1; j < SZ(G[i]); j++) {
Edge e = G[i][j];
printf("%d%c", G[e.to][e.rev].c + 1, j == SZ(G[i]) - 1 ? '\n' : ' ');
}
}
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
CASET
solve();
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
Uva 11082 Matrix Decompressing (最大流)
标签:
原文地址:http://blog.csdn.net/u013923947/article/details/47670557