源代码如下:
#include<iostream>
using namespace std;
#define MAX_VERTEX_NUM 20
#define infinity 9
typedef int QElemType;
typedef int EdgeData;
typedef char VertexData;
typedef struct
{
VertexData verlist[MAX_VERTEX_NUM]; //顶点表
EdgeData edge[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; //邻接矩阵--可试为边之间的关系
int vexnum,edgenum; //顶点数和边数
}MTGraph;
void printMTGragh(MTGraph *G){
int i,j;
for (i = 1 ; i <= G->vexnum ; i++){
for (j = 1 ; j <= G->vexnum ; j++)
cout<<G->edge[i][j]<<" ";
cout<<endl;
}
// Prim(G,G->edge);
}
void Prim(MTGraph *G){ //集合V-U的顶点尚未加入最小生成树中,集合U则已加入
int lowcost[MAX_VERTEX_NUM+1]; //用来保存集合V-U中各顶点与集合U中顶点最短边的权值,
// lowcost[v] = infinity 表示顶点V已加入了最小生成树中
int closest[MAX_VERTEX_NUM+1]; //用来保存依附于该边的在集合U的顶点
// 该边:集合V-U中各顶点与集合U中顶点最短边
int i,j,k,h,min;
// printMTGragh(G);
for(i = 2;i<=G->vexnum;i++){
lowcost[i] = G->edge[1][i];
closest[i] = 1; //将定点1加入集合U中
}
for(i = 2;i<=G->vexnum;i++){
min = 9 ;
k = i;
for(j=2;j<=G->vexnum;j++)
if(lowcost[j] < min && lowcost[j]!=0){
min = lowcost[j]; //在 lowcost中取最小边
k = j;
}
cout<<"将第"<<i<<"个元素放入集合U中时,Lowcost原序列:";
for(h = 2;h<=G->vexnum;h++)
cout<<lowcost[h]<<" ";
cout<<endl;
cout<<"("<<k<<","<<closest[k]<<")"<<endl; //输出顶点K与之对应的权值
cout<<"取出的顶点为:"<<k<<"将顶点"<<k<<"与顶点"<<closest[k]<<"相连"<<endl;
lowcost[k] = 0; //将顶点K置于集合U中
for(j=2;j<=G->vexnum;j++) //调整数组lowcost和 cloest
if(G->edge[k][j]<lowcost[j]){
lowcost[j] = G->edge[k][j];
closest[j] = k;
}
cout<<"将第"<<i<<"个元素放入集合U中时,Lowcost更新后的序列:";
for(h = 2;h<=G->vexnum;h++)
cout<<lowcost[h]<<" ";
cout<<endl;
}
} //时间复杂度O(n^2)
//建立图的邻接矩阵
void createMTGraph(MTGraph *G){
int i,j,k,w;
cout<<"输入顶点数和边数如(5 7)"<<endl;
cin>>G->vexnum>>G->edgenum;
cout<<"输入顶点信息,如(A B C D...)"<<endl;
for(i = 0 ; i<G->vexnum;i++)
cin>>G->verlist[i];
for(i = 0 ; i<=G->vexnum;i++)
for(j = 0 ; j<=G->vexnum;j++)
G->edge[i][j] = infinity;
cout<<"输入边(i,j)上的权值w,如(i j w)"<<endl;
for(k=0;k<G->edgenum;k++){
cin>>i>>j>>w;
G->edge[i][j] = w;
G->edge[j][i] = w;
}
}
main(){
MTGraph *G ;
G = new MTGraph();
createMTGraph(G);
printMTGragh(G);
Prim(G);
system("pause");
}
程序运行后的结果
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/wen942467928/article/details/47682607