标签:acm算法
2 3 1 3 2 6 2 3 4 5 6 1
2 6
给出一个序列,求变换几次可以回到原来的位置。比如 1 3 2 ,3 不在原来的位置,变到3位置,次数加1,2变到2,次数+1.得到2.。
做法就是分解循环长度。然后求下最小公倍数。但是不能直接用lcm求最小公倍数。。我们可以考虑用质数分解来求,即公共的质因子乘每个数本身的质因子。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
int a[3000010];
int vis[3000010];
int b[3000010];
const ll mod=3221225473;
inline int read()
{
char ch;
for (ch=getchar(); ch<48||ch>57;) ch=getchar();
int d=0;
for (; ch>47&&ch<58; ch=getchar()) d=d*10+ch-48;
return d;
}
ll gcd(ll a,ll b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}
ll lcm(ll a,ll b)
{
return a/gcd(a,b)*b;
}
int main()
{
int t,n,i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=1; i<=n; i++)
a[i]=read();
memset(vis,0,sizeof(vis));
memset(b,0,sizeof(b));
for(i=1; i<=n; i++)
{
if(!vis[i])
{
int t=i;
int s=0;
while(!vis[t])
{
s++;
vis[t]=1;
t=a[t];
}
for(j=2; j*j<=s; j++)
{
int cnt=0;
while(s%j==0)
{
cnt++;
s/=j;
}
b[j]=max(b[j],cnt); //统计公共的质因子。
}
if(s>1)
b[s]=max(b[s],1);
}
}
// cout<<lcm(121,11)<<endl;
ull ans=1;
for(i=2; i<=n; i++)
for(j=1; j<=b[i]; j++)
ans=ull(ans)*i%mod;
cout<<ans<<endl;
}
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
HDU 5392 Infoplane in Tina Town
标签:acm算法
原文地址:http://blog.csdn.net/sky_miange/article/details/47700655