一、RSA攻击大全 1. 模数分解 Small q:模数N有小素数因子; fermat:模数N的因子p与q非常接近; 模不互素:给出多组公钥,但是其中的模数共用了素因子; 2. 针对指数进行攻击 小公钥指数攻击:指数很小; 低加密指数广播攻击:相同的消息发送给多个接收者,且加密指数较低; 3. 针对 ...
分类:
其他好文 时间:
2020-08-17 17:27:45
阅读次数:
121
4. 丑数 II 中文English 设计一个算法,找出只含素因子2,3,5 的第 n 小的数。 符合条件的数如:1, 2, 3, 4, 5, 6, 8, 9, 10, 12... 样例 样例 1: 输入:9 输出:10 样例 2: 输入:1 输出:1 挑战 要求时间复杂度为 O(nlogn) 或者 ...
分类:
其他好文 时间:
2020-06-27 19:50:48
阅读次数:
52
题目 丑数 二 设计一个算法,找出只含素因子 ,`3 5` 的第 n 小的数。 符合条件的数如: 我们可以认为1也是一个丑数 分析 根据题目可得,丑数即由若干个2、3、5相乘所的到的数。可以写成 2^a + 3^b + 5^c a,b,c可以取随意自然数 再进一步分析,可以得到每个丑数都存在另一个丑 ...
分类:
编程语言 时间:
2020-05-10 21:40:01
阅读次数:
151
基于蚁群算法的10个城市TSP问题的最短路径研究 1 蚁群算法 1.1 蚁群算法的流程步骤 这里以TSP问题为例,算法设计的流程如下: 步骤1:对相关参数进行初始化,包括蚁群规模、信息素因子、启发函数因子、信息素挥发因子、信息素常数、最大迭代次数等,以及将数据读入程序,并进行预处理:比如将城市的坐标 ...
分类:
编程语言 时间:
2020-04-18 10:09:34
阅读次数:
78
如果定义在正整数集上的函数 $f(n)$ 满足对于任意一对互素正整数 $n, m$ 都有 $f(n)f(m)=f(nm)$, 那么 $f$ 就叫做积性函数。 积性函数又可以表示为,假设 $n$ 的素因子分解式为 $n=\prod_{i=1}^mp_i^{c_i}$, 那么 $f(n)=\prod_{ ...
分类:
其他好文 时间:
2020-03-30 13:08:52
阅读次数:
68
//素因子去重 #include<stdio.h> int num[4000000] = {0}; int main(){ long long n,ans; scanf("%d",&n); if(n==2){ printf("%d",n); return 0; } for(int k=2;k<=n; ...
分类:
编程语言 时间:
2020-01-30 20:42:53
阅读次数:
70
欧拉函数 一.简介 我们定义一种函数φ(x),它的值为比x小的数里与x互质的数的个数。 其计算公式是 (其中p1, p2……pn为x的所有质因数,x是不为0的整数)。 定义φ(1) = 1。 这个公式可以这样理解,对于整数x的任何一个素因子pi,在1-n中,它的倍数的个数为x/pi,剩下的数就是x* ...
分类:
其他好文 时间:
2020-01-28 22:56:38
阅读次数:
100
ybt1210 括号匹配 【题目描述】 输入一个数,输出其素因子分解表达式。 【输入】 输入一个整数 n (2≤n include include using namespace std; int a,i=2,ans[105],n;//i是除数,从2开始 bool bj=0;//输出时的标记,保证一 ...
分类:
其他好文 时间:
2020-01-24 00:06:57
阅读次数:
83
欧拉筛 求小于$n$的所有正整数中的素数集合 $code :$ 每个数只会被最小的素因子筛一次 ...
分类:
其他好文 时间:
2020-01-22 22:08:18
阅读次数:
68
正交试验法 正交表的由来 n阶拉丁方 正交设计的基本概念 在一项试验中 ,把影响试验结果的量称为试验因素(因子) ,简称因素。因素可以理解为试验过程中的自变量,试验结果可以看成因素的函数。在试验过程中,每一个因素可以处于不同的状态或状况,把因素所处的状态或状况,称为因素的水平,简称水平。 每列中不同 ...
分类:
其他好文 时间:
2020-01-09 21:14:44
阅读次数:
94