标签:delay open async 条件 lag err table interrupt 0x03
目的:在同一时刻,只有一个应用程序打开/dev/buttons
驱动程序:
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
#include <asm/hardware.h>
#include <linux/poll.h>
static struct class *sixthdrv_class;
static struct class_device	*sixthdrv_class_dev;
volatile unsigned long *gpfcon;
volatile unsigned long *gpfdat;
volatile unsigned long *gpgcon;
volatile unsigned long *gpgdat;
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);
/* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */
static volatile int ev_press = 0;
static struct fasync_struct *button_async;
struct pin_desc{
	unsigned int pin;
	unsigned int key_val;
};
/* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */
/* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */
static unsigned char key_val;
struct pin_desc pins_desc[4] = {
	{S3C2410_GPF0, 0x01},
	{S3C2410_GPF2, 0x02},
	{S3C2410_GPG3, 0x03},
	{S3C2410_GPG11, 0x04},
};
//static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1
static DECLARE_MUTEX(button_lock); //定义互斥锁
/*
  * 确定按键值
  */
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
	struct pin_desc * pindesc = (struct pin_desc *)dev_id;
	unsigned int pinval;
	
	pinval = s3c2410_gpio_getpin(pindesc->pin);
	if (pinval)
	{
		/* 松开 */
		key_val = 0x80 | pindesc->key_val;
	}
	else
	{
		/* 按下 */
		key_val = pindesc->key_val;
	}
    ev_press = 1;                  /* 表示中断发生了 */
    wake_up_interruptible(&button_waitq);   /* 唤醒休眠的进程 */
	
	kill_fasync (&button_async, SIGIO, POLL_IN);
	
	return IRQ_RETVAL(IRQ_HANDLED);
}
static int sixth_drv_open(struct inode *inode, struct file *file)
{
#if 0 
if(--canopen !=0)//开始时,canopen的值为1,--canopen=0,此时表明没有应用程序将其打开。
{
canopen++;
return -EBUSY;
}
#endif
#if 0	
	if (!atomic_dec_and_test(&canopen))
	{
		atomic_inc(&canopen);
		return -EBUSY;
	}
#endif		
	if (file->f_flags & O_NONBLOCK)
	{
		if (down_trylock(&button_lock))
			return -EBUSY;
	}
	else
	{
		/* 获取信号量 */
		down(&button_lock);
	}
	/* 配置GPF0,2为输入引脚 */
	/* 配置GPG3,11为输入引脚 */
	request_irq(IRQ_EINT0,  buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]);
	request_irq(IRQ_EINT2,  buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]);
	request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]);
	request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]);	
	return 0;
}
ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
	if (size != 1)
		return -EINVAL;
	if (file->f_flags & O_NONBLOCK)
	{
		if (!ev_press)
			return -EAGAIN;
	}
	else
	{
		/* 如果没有按键动作, 休眠 */
		wait_event_interruptible(button_waitq, ev_press);
	}
	/* 如果有按键动作, 返回键值 */
	copy_to_user(buf, &key_val, 1);
	ev_press = 0;
	
	return 1;
}
int sixth_drv_close(struct inode *inode, struct file *file)
{
//canopen++;                                                                        
	//atomic_inc(&canopen);
	free_irq(IRQ_EINT0, &pins_desc[0]);
	free_irq(IRQ_EINT2, &pins_desc[1]);
	free_irq(IRQ_EINT11, &pins_desc[2]);
	free_irq(IRQ_EINT19, &pins_desc[3]);
	up(&button_lock);
	return 0;
}
static unsigned sixth_drv_poll(struct file *file, poll_table *wait)
{
	unsigned int mask = 0;
	poll_wait(file, &button_waitq, wait); // 不会立即休眠
	if (ev_press)
		mask |= POLLIN | POLLRDNORM;
	return mask;
}
static int sixth_drv_fasync (int fd, struct file *filp, int on)
{
	printk("driver: sixth_drv_fasync\n");
	return fasync_helper (fd, filp, on, &button_async);
}
static struct file_operations sencod_drv_fops = {
    .owner   =  THIS_MODULE,    /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
    .open    =  sixth_drv_open,     
	.read	 =	sixth_drv_read,	   
	.release =  sixth_drv_close,
	.poll    =  sixth_drv_poll,
	.fasync	 =  sixth_drv_fasync,
};
int major;
static int sixth_drv_init(void)
{
	major = register_chrdev(0, "sixth_drv", &sencod_drv_fops);
sixthdrv_class = class_create(THIS_MODULE, "sixth_drv");
sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */
	gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
	gpfdat = gpfcon + 1;
	gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16);
	gpgdat = gpgcon + 1;
	return 0;
}
static void sixth_drv_exit(void)
{
	unregister_chrdev(major, "sixth_drv");
	class_device_unregister(sixthdrv_class_dev);
	class_destroy(sixthdrv_class);
	iounmap(gpfcon);
	iounmap(gpgcon);
	return 0;
}
module_init(sixth_drv_init);
module_exit(sixth_drv_exit);
MODULE_LICENSE("GPL");
附图

图1,这个图描述了应用程序A先执行,然后应用程序B执行的过程。程序A能成功的打开,而程序B则不行。实现了在同一时刻,只有一个应用程序打开/dev/buttons的目标。但这是比较理想的情况。

因为linux是个多任务的操作系统,当程序A执行到,读取那一步(即a)时,程序B突然就来了,然后成功的打开了/dev/button.。然后再去执行程序A中的b,c步。也成功的打开了/dev/button。虽然这种情况发生的概率并不高,但是你不能否定这种可能的存在。这是程序的漏洞,如何去解决呢?先分析问题产生的原因:
程序A中的--canopen这个操作并不能再很短的时间内完成,在执行a,b,c这几步时,很可能被打断。这个过程不是一个原子的操作,中间的过程可能被打断,被切换出去。
1. 原子操作
原子操作指的是在执行过程中不会被别的代码路径所中断的操作。
常用原子操作函数举例:
atomic_t v = ATOMIC_INIT(0);     //定义原子变量v并初始化为0
atomic_read(atomic_t *v);        //返回原子变量的值
void atomic_inc(atomic_t *v);    //原子变量增加1
void atomic_dec(atomic_t *v);    //原子变量减少1
int atomic_dec_and_test(atomic_t *v); //自减操作后测试其是否为0,为0则返回true,否则返回false。
2. 信号量
信号量(semaphore)是用于保护临界区的一种常用方法,只有得到信号量的进程才能执行临界区代码。
当获取不到信号量时,进程进入休眠等待状态。
定义信号量
struct semaphore sem;
初始化信号量
void sema_init (struct semaphore *sem, int val);
void init_MUTEX(struct semaphore *sem);//初始化为0
static DECLARE_MUTEX(button_lock); //定义互斥锁
获得信号量
void down(struct semaphore * sem);
int down_interruptible(struct semaphore * sem); 
int down_trylock(struct semaphore * sem);
释放信号量
void up(struct semaphore * sem);
3. 阻塞
阻塞操作    
是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后再进行操作。
被挂起的进程进入休眠状态,被从调度器的运行队列移走,直到等待的条件被满足。
非阻塞操作  
进程在不能进行设备操作时并不挂起,它或者放弃,或者不停地查询,直至可以进行操作为止。
fd = open("...", O_RDWR | O_NONBLOCK);
标签:delay open async 条件 lag err table interrupt 0x03
原文地址:http://www.cnblogs.com/-glb/p/7078359.html