码迷,mamicode.com
首页 > 其他好文 > 详细

字符设备驱动程序之同步互斥阻塞

时间:2017-06-25 23:07:00      阅读:292      评论:0      收藏:0      [点我收藏+]

标签:delay   open   async   条件   lag   err   table   interrupt   0x03   

目的:在同一时刻,只有一个应用程序打开/dev/buttons

驱动程序:

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
#include <asm/hardware.h>
#include <linux/poll.h>


static struct class *sixthdrv_class;
static struct class_device *sixthdrv_class_dev;

volatile unsigned long *gpfcon;
volatile unsigned long *gpfdat;

volatile unsigned long *gpgcon;
volatile unsigned long *gpgdat;


static DECLARE_WAIT_QUEUE_HEAD(button_waitq);

/* 中断事件标志, 中断服务程序将它置1,sixth_drv_read将它清0 */
static volatile int ev_press = 0;

static struct fasync_struct *button_async;


struct pin_desc{
unsigned int pin;
unsigned int key_val;
};


/* 键值: 按下时, 0x01, 0x02, 0x03, 0x04 */
/* 键值: 松开时, 0x81, 0x82, 0x83, 0x84 */
static unsigned char key_val;

struct pin_desc pins_desc[4] = {
{S3C2410_GPF0, 0x01},
{S3C2410_GPF2, 0x02},
{S3C2410_GPG3, 0x03},
{S3C2410_GPG11, 0x04},
};

//static atomic_t canopen = ATOMIC_INIT(1); //定义原子变量并初始化为1

static DECLARE_MUTEX(button_lock); //定义互斥锁

/*
* 确定按键值
*/
static irqreturn_t buttons_irq(int irq, void *dev_id)
{
struct pin_desc * pindesc = (struct pin_desc *)dev_id;
unsigned int pinval;

pinval = s3c2410_gpio_getpin(pindesc->pin);

if (pinval)
{
/* 松开 */
key_val = 0x80 | pindesc->key_val;
}
else
{
/* 按下 */
key_val = pindesc->key_val;
}

ev_press = 1; /* 表示中断发生了 */
wake_up_interruptible(&button_waitq); /* 唤醒休眠的进程 */

kill_fasync (&button_async, SIGIO, POLL_IN);

return IRQ_RETVAL(IRQ_HANDLED);
}

static int sixth_drv_open(struct inode *inode, struct file *file)
{

#if 0
if(--canopen !=0)//开始时,canopen的值为1,--canopen=0,此时表明没有应用程序将其打开。

{

  canopen++;

  return -EBUSY;

}
#endif
#if 0
if (!atomic_dec_and_test(&canopen))
{
atomic_inc(&canopen);
return -EBUSY;
}
#endif

if (file->f_flags & O_NONBLOCK)
{
if (down_trylock(&button_lock))
return -EBUSY;
}
else
{
/* 获取信号量 */
down(&button_lock);
}

/* 配置GPF0,2为输入引脚 */
/* 配置GPG3,11为输入引脚 */
request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "S2", &pins_desc[0]);
request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "S3", &pins_desc[1]);
request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "S4", &pins_desc[2]);
request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "S5", &pins_desc[3]);

return 0;
}

ssize_t sixth_drv_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
if (size != 1)
return -EINVAL;

if (file->f_flags & O_NONBLOCK)
{
if (!ev_press)
return -EAGAIN;
}
else
{
/* 如果没有按键动作, 休眠 */
wait_event_interruptible(button_waitq, ev_press);
}

/* 如果有按键动作, 返回键值 */
copy_to_user(buf, &key_val, 1);
ev_press = 0;

return 1;
}


int sixth_drv_close(struct inode *inode, struct file *file)
{

//canopen++;                                                                        
//atomic_inc(&canopen);
free_irq(IRQ_EINT0, &pins_desc[0]);
free_irq(IRQ_EINT2, &pins_desc[1]);
free_irq(IRQ_EINT11, &pins_desc[2]);
free_irq(IRQ_EINT19, &pins_desc[3]);
up(&button_lock);
return 0;
}

static unsigned sixth_drv_poll(struct file *file, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait); // 不会立即休眠

if (ev_press)
mask |= POLLIN | POLLRDNORM;

return mask;
}

static int sixth_drv_fasync (int fd, struct file *filp, int on)
{
printk("driver: sixth_drv_fasync\n");
return fasync_helper (fd, filp, on, &button_async);
}


static struct file_operations sencod_drv_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_module变量 */
.open = sixth_drv_open,
.read = sixth_drv_read,
.release = sixth_drv_close,
.poll = sixth_drv_poll,
.fasync = sixth_drv_fasync,
};


int major;
static int sixth_drv_init(void)
{
major = register_chrdev(0, "sixth_drv", &sencod_drv_fops);

sixthdrv_class = class_create(THIS_MODULE, "sixth_drv");

sixthdrv_class_dev = class_device_create(sixthdrv_class, NULL, MKDEV(major, 0), NULL, "buttons"); /* /dev/buttons */

gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
gpfdat = gpfcon + 1;

gpgcon = (volatile unsigned long *)ioremap(0x56000060, 16);
gpgdat = gpgcon + 1;

return 0;
}

static void sixth_drv_exit(void)
{
unregister_chrdev(major, "sixth_drv");
class_device_unregister(sixthdrv_class_dev);
class_destroy(sixthdrv_class);
iounmap(gpfcon);
iounmap(gpgcon);
return 0;
}


module_init(sixth_drv_init);

module_exit(sixth_drv_exit);

MODULE_LICENSE("GPL");

 附图

技术分享

 

图1,这个图描述了应用程序A先执行,然后应用程序B执行的过程。程序A能成功的打开,而程序B则不行。实现了在同一时刻,只有一个应用程序打开/dev/buttons的目标。但这是比较理想的情况。

技术分享

因为linux是个多任务的操作系统,当程序A执行到,读取那一步(即a)时,程序B突然就来了,然后成功的打开了/dev/button.。然后再去执行程序A中的b,c步。也成功的打开了/dev/button。虽然这种情况发生的概率并不高,但是你不能否定这种可能的存在。这是程序的漏洞,如何去解决呢?先分析问题产生的原因:

程序A中的--canopen这个操作并不能再很短的时间内完成,在执行a,b,c这几步时,很可能被打断。这个过程不是一个原子的操作,中间的过程可能被打断,被切换出去。

1. 原子操作
原子操作指的是在执行过程中不会被别的代码路径所中断的操作。
常用原子操作函数举例:
atomic_t v = ATOMIC_INIT(0); //定义原子变量v并初始化为0
atomic_read(atomic_t *v); //返回原子变量的值
void atomic_inc(atomic_t *v); //原子变量增加1
void atomic_dec(atomic_t *v); //原子变量减少1
int atomic_dec_and_test(atomic_t *v); //自减操作后测试其是否为0,为0则返回true,否则返回false。

2. 信号量
信号量(semaphore)是用于保护临界区的一种常用方法,只有得到信号量的进程才能执行临界区代码。
当获取不到信号量时,进程进入休眠等待状态。

定义信号量
struct semaphore sem;
初始化信号量
void sema_init (struct semaphore *sem, int val);
void init_MUTEX(struct semaphore *sem);//初始化为0

static DECLARE_MUTEX(button_lock); //定义互斥锁

获得信号量
void down(struct semaphore * sem);
int down_interruptible(struct semaphore * sem);
int down_trylock(struct semaphore * sem);
释放信号量
void up(struct semaphore * sem);

3. 阻塞
阻塞操作
是指在执行设备操作时若不能获得资源则挂起进程,直到满足可操作的条件后再进行操作。
被挂起的进程进入休眠状态,被从调度器的运行队列移走,直到等待的条件被满足。

非阻塞操作
进程在不能进行设备操作时并不挂起,它或者放弃,或者不停地查询,直至可以进行操作为止。

fd = open("...", O_RDWR | O_NONBLOCK);

 

字符设备驱动程序之同步互斥阻塞

标签:delay   open   async   条件   lag   err   table   interrupt   0x03   

原文地址:http://www.cnblogs.com/-glb/p/7078359.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!