标签:des style blog class code java
3 3 1 2 1 3 0 0 100 0 0 100 3 1 2 2 3 0 0 100 0 0 100 6 1 2 2 3 1 4 4 5 4 6 0 0 20 30 40 30 50 50 70 10 20 60
Case 1: 2.000000 Case 2: impossible Case 3: 2.895522
对于在点i下一步有3种情况:
1:被杀死回到点1 --- 概率为ki
2:找到出口退出----慨率为ei
3:沿着边进入下一个点
求从点1开始到退出的平均需要走的边数
/*分析:
对于点i:
1,点i是叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)*(E(father)+1)
=>E(i)=ki*E(1)+(1-ki-ei)*E(father)+(1-ki-ei)
2,点i非叶子结点,则:
E(i)=ki*E(1)+ei*0+(1-ki-ei)/m *(E(father)+1)+(1-ki-ei)/m*SUM(E(child)+1)
=>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUM(E(child))+(1-ki-ei);//作为1式
从公式可知求E(i)需要求到E(father),E(child)
但这是很难求到的,因为即使是叶子结点也需要知道E(1),但是E(1)是未知的需要求的
假设:E(i)=Ai*E(1)+Bi*E(father)+Ci;//作为2式
所以:E(child)=Aj*E(1)+Bj*E(i)+Cj;
=>SUM(E(child))=SUm(Aj*E(1)+Bj*E(i)+Cj);
带入1式
=>E(i)=ki*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei)/m*SUm(Aj*E(1)+Bj*E(i)+Cj)+(1-ki-ei);
=>(1-(1-ki-ei)/m*SUM(Bj))*E(i)=(ki+(1-ki-ei)/m*SUM(Aj))*E(1)+(1-ki-ei)/m *E(father)+(1-ki-ei+(1-ki-ei)/m*SUM(cj));
与上述2式对比得到:
Ai=(ki+(1-ki-ei)/m*SUM(Aj)) / (1-(1-ki-ei)/m*SUM(Bj))
Bi=(1-ki-ei)/m / (1-(1-ki-ei)/m*SUM(Bj))
Ci=(1-ki-ei+(1-ki-ei)/m*SUM(cj)) / (1-(1-ki-ei)/m*SUM(Bj))
所以Ai,Bi,Ci只与i的孩子Aj,Bj,Cj和本身ki,ei有关
于是可以从叶子开始逆推得到A1,B1,C1
在叶子节点:
Ai=ki;
Bi=(1-ki-ei);
Ci=(1-ki-ei);
而E(1)=A1*E(1)+B1*0+C1;
=>E(1)=C1/(1-A1);
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std;
const int MAX=10000+10;
const double eps=1e-9;
int n,size;
int head[MAX];
double A,B,C,k[MAX],e[MAX];
struct Edge{
int v,next;
Edge(){}
Edge(int V,int NEXT):v(V),next(NEXT){}
}edge[MAX*2];
void Init(){
memset(head,-1,sizeof head);
size=0;
}
void InsertEdge(int u,int v){
edge[size]=Edge(v,head[u]);
head[u]=size++;
}
void dfs(int u,int father){
double a=0,b=0,c=0,p;
int m=0;
for(int i=head[u]; i != -1;i=edge[i].next){
int v=edge[i].v;
if(v == father)continue;
dfs(v,u);
a+=A;
b+=B;
c+=C;
++m;
}
if(father != -1)++m;
p=(1-k[u]-e[u])/m;
A=(k[u]+p*a)/(1-p*b);
B=p/(1-p*b);
C=(1-k[u]-e[u]+p*c)/(1-p*b);
}
int main(){
int t,u,v,num=0;
scanf("%d",&t);
while(t--){
scanf( "%d",&n);
Init();
for(int i=1;i<n;++i){
scanf("%d%d",&u,&v);
InsertEdge(u,v);
InsertEdge(v,u);
}
for(int i=1;i<=n;++i){
scanf("%lf%lf",&k[i],&e[i]);
k[i]/=100;
e[i]/=100;
}
dfs(1,-1);
if(fabs(A-1)<eps)printf("Case %d: impossible\n",++num);
else printf("Case %d: %.6f\n",++num,C/(1-A));
}
return 0;
}标签:des style blog class code java
原文地址:http://blog.csdn.net/xingyeyongheng/article/details/25506001