Prerequisites!
This article builds on my previous article "Visualizing mathematical functions by generating custom meshes using FireMonkey".
The wave function
The wave function we‘ll use in this article is:
f(x,y) = A*sin(1/L*r-v*t)
where:
- (x,y) = observation point
- A = amplitude
- L = wave length
- r = distance between wave center and observation point
- v = velocity of wave propagation
- t = time
In Delphi it simply becomes:
functionf(x,y : Double) : Double;beginf := Amplitude*Sin(1/Length*Sqrt(Sqr(x-PosX)+Sqr(y-PosY))-Speed*t);end;
Note: It should be noted that this function simply gives us the state of equilibrium. We‘re completely ignoring starting scenarios and the fact that waves die out over time and distance.
The screen shot below shows one wave:
Hide image
Generating the mesh
In order to generate the mesh, we borrow the code from my previous article, and modify it slightly to give it a time parameter:
procedureTForm1.GenerateWave(t : Double);functionf(x,y : Double) : Double;vari : Integer;beginResult := 0;fori:=0to3dowithWave[i]doifEnabledthenResult := Result+Amplitude*Sin(1/Length*Sqrt(Sqr(x-PosX)+Sqr(y-PosY))-Speed*t);end;constMaxX = 30; MaxZ = 30;varu, v : Double; px, py, pz :array[0..3]ofDouble; d : Double; NP, NI : Integer; BMP : TBitmap; k : Integer;begind := 0.5; NP := 0; NI := 0; Mesh1.Data.VertexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*4; Mesh1.Data.IndexBuffer.Length := Round(2*MaxX*2*MaxZ/d/d)*6; BMP := TBitmap.Create(1,360);fork := 0to359doBMP.Pixels[0,k] := CorrectColor(HSLtoRGB(k/360,0.75,0.5)); u := -MaxX;whileu < MaxXdobeginv := -MaxZ;whilev < MaxZdobeginpx[0] := u; pz[0] := v; py[0] := f(px[0],pz[0]); px[1] := u+d; pz[1] := v; py[1] := f(px[1],pz[1]); px[2] := u+d; pz[2] := v+d; py[2] := f(px[2],pz[2]); px[3] := u; pz[3] := v+d; py[3] := f(px[3],pz[3]);withMesh1.Datadobegin// Set the pointswithVertexBufferdobeginVertices[NP+0] := Point3D(px[0],py[0],pz[0]); Vertices[NP+1] := Point3D(px[1],py[1],pz[1]); Vertices[NP+2] := Point3D(px[2],py[2],pz[2]); Vertices[NP+3] := Point3D(px[3],py[3],pz[3]);end;// Map the colorswithVertexBufferdobeginTexCoord0[NP+0] := PointF(0,(py[0]+35)/45); TexCoord0[NP+1] := PointF(0,(py[1]+35)/45); TexCoord0[NP+2] := PointF(0,(py[2]+35)/45); TexCoord0[NP+3] := PointF(0,(py[3]+35)/45);end;// Map the trianglesIndexBuffer[NI+0] := NP+1; IndexBuffer[NI+1] := NP+2; IndexBuffer[NI+2] := NP+3; IndexBuffer[NI+3] := NP+3; IndexBuffer[NI+4] := NP+0; IndexBuffer[NI+5] := NP+1;end; NP := NP+4; NI := NI+6; v := v+d;end; u := u+d;end; Mesh1.Material.Texture := BMP;end;
Animating the mesh
The above code generates a "snap shot" of the wave interaction between 4 waves at any time t.
Animating the wave is simply a matter of using a timer to increment time and re-generating the mesh over and over again:
procedureTForm1.Timer1Timer(Sender: TObject);beginGenerateWave(t); t := t+0.1;end;
The waves are represented by this record:
typeTWave =recordEnabled : Boolean; Amplitude : Double; Length : Double; PosX : Double; PosY : Double; Speed : Double;end;
In the demo project that accompanies this article, I have declared 4 starting waves like so:
varWave :array[0..3]ofTWave = ((Enabled: False; Amplitude: 1; Length: 1; PosX: -20; PosY: -20; Speed: 1), (Enabled: False; Amplitude: 1; Length: 1; PosX: +20; PosY: -20; Speed: 1), (Enabled: False; Amplitude: 1; Length: 1; PosX: +20; PosY: +20; Speed: 1), (Enabled: False; Amplitude: 1; Length: 1; PosX: -20; PosY: +20; Speed: 1));
Note that all 4 waves have the same properties, except that their origins are spread across the coordinate system. Specifically they‘re located in (-20,-20), (+20,-20), (+20,+20) and (-20,+20).