标签:i++ sha 复杂度 ble query 长度 div 建表 turn
RMQ复杂度:建表$O\left ( nlgn \right ) $,查询$O\left ( 1 \right )$
ll F_Min[maxn][20],F_Max[maxn][20];
void Init()
{
for(int i = 1; i <= n; i++)
{
F_Min[i][0] = F_Max[i][0] = num[i];
}
for(int i = 1; (1<<i) <= n; i++) //按区间长度递增顺序递推
{
for(int j = 1; j+(1<<i)-1 <= n; j++) //区间起点
{
F_Max[j][i] = max(F_Max[j][i-1],F_Max[j+(1<<(i-1))][i-1]);
F_Min[j][i] = min(F_Min[j][i-1],F_Min[j+(1<<(i-1))][i-1]);
}
}
}
ll Query_max(int l,int r)//l到r,num数组的最大值
{
int k = (int)(log(double(r-l+1))/log((double)2));
return max(F_Max[l][k], F_Max[r-(1<<k)+1][k]);
}
ll Query_min(int l,int r)//l到r,num数组的最小值
{
int k = (int)(log(double(r-l+1))/log((double)2));
return min(F_Min[l][k], F_Min[r-(1<<k)+1][k]);
}
标签:i++ sha 复杂度 ble query 长度 div 建表 turn
原文地址:https://www.cnblogs.com/carcar/p/10742630.html